
Cloud Computing Patterns
Identification, Design, and Application

Von der Fakultät für Informatik, Elektrotechnik und Informationstechnik der 
Universität Stuttgart zur Erlangung der Würde eines Doktors der 

Naturwissenschaften (Dr. rer. nat.) genehmigte Abhandlung

Vorgelegt von

Christoph Fehling

aus Hannover

Hauptberichter: Prof. Dr. Dr. h. c. Frank Leymann

Mitberichter: Univ.Prof. Dr. Schahram Dustdar

Tag der mündlichen Prüfung: 07.10.2015

Institut für Architektur von Anwendungssystemen
der Universität Stuttgart

2015





Contents

List of Acronyms 9
Zusammenfassung 13
Abstract 15
1 Introduction 17

1.1 Terminology and Conventions . . . . . . . . . . . . . . 19

1.1.1 Patterns and Pattern Languages . . . . . . . . . 19

1.1.2 Cloud Applications and Cloud Providers . . . . 20

1.2 Problem Domain and Contributions . . . . . . . . . . . 21

1.2.1 Architectural Baseline of Cloud Computing . . 22

1.2.2 Cloud Computing Patterns . . . . . . . . . . . . 24

1.2.3 Cloud Computing Pattern Language . . . . . . 29

3



Contents

1.2.4 Design Method for Cloud Applications . . . . . 31

1.3 Pattern Engineering Process . . . . . . . . . . . . . . . 33

1.4 Chapter Summary . . . . . . . . . . . . . . . . . . . . . 35

2 Related Work 39
2.1 Guidelines for Pattern Research . . . . . . . . . . . . . 40

2.1.1 Pattern Identification and Authoring . . . . . . 41

2.1.2 Iterative Pattern Review . . . . . . . . . . . . . 42

2.1.3 Participating in Pattern Conferences . . . . . . 42

2.2 Other Cloud Computing Patterns . . . . . . . . . . . . 43

2.2.1 Cloud Computing Patterns of PLoP Conferences 44

2.2.2 Cloud Design Patterns (Amazon Web Services) 45

2.2.3 Cloud Design Patterns (Microsoft Azure) . . . . 46

2.2.4 Cloud Architecture Patterns . . . . . . . . . . . 48

2.2.5 CloudPatterns.org . . . . . . . . . . . . . . . . 49

2.3 Chapter Summary . . . . . . . . . . . . . . . . . . . . . 51

3 Identification of Patterns for Cloud Computing 53
3.1 Architectural Principles of Cloud Computing . . . . . . 56

3.1.1 Cloud Computing Properties . . . . . . . . . . 57

3.1.2 Impact of Cloud Computing Properties on

Applications . . . . . . . . . . . . . . . . . . . . 59

3.1.3 IDEAL Properties of Cloud Applications . . . . 63

3.2 Cloud Application Properties in Other Architectural

Styles . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

3.2.1 Distributed Systems . . . . . . . . . . . . . . . 67

3.2.2 Messaging . . . . . . . . . . . . . . . . . . . . . 72

3.2.3 Representational State Transfer (REST) . . . . . 74

3.2.4 Service-Oriented Architectures . . . . . . . . . 78

3.3 Reference Cloud Application . . . . . . . . . . . . . . . 80

3.3.1 Cloud Runtime Environment . . . . . . . . . . 81

4



Contents

3.3.2 Cloud Application . . . . . . . . . . . . . . . . 82

3.3.3 Application Stack . . . . . . . . . . . . . . . . . 84

3.4 Architectural Topics for Cloud Applications . . . . . . 85

3.4.1 Accounting and Controlling . . . . . . . . . . . 86

3.4.2 Application Migration . . . . . . . . . . . . . . 87

3.4.3 Cloud Integration . . . . . . . . . . . . . . . . . 88

3.4.4 Compliance to Laws and Regulations . . . . . . 89

3.4.5 Data Storage . . . . . . . . . . . . . . . . . . . 90

3.4.6 License Management . . . . . . . . . . . . . . . 91

3.4.7 Monitoring, Analysis, and Reporting . . . . . . 91

3.4.8 Multi-Tenant Cloud Middleware . . . . . . . . . 92

3.4.9 Organizational Structures . . . . . . . . . . . . 93

3.4.10 Security . . . . . . . . . . . . . . . . . . . . . . 94

3.5 Information Sources for Cloud Computing Patterns . . 95

3.5.1 Cloud Providers and Cloud Applications . . . . 95

3.5.2 Existing Patterns . . . . . . . . . . . . . . . . . 96

3.6 Chapter Summary . . . . . . . . . . . . . . . . . . . . . 97

4 Design of Cloud Computing Patterns 99
4.1 Pattern Document Format . . . . . . . . . . . . . . . . 102

4.2 Pattern Language Structure . . . . . . . . . . . . . . . . 105

4.2.1 References among Patterns . . . . . . . . . . . 107

4.2.2 Constraints on the Pattern Language Metamodel 108

4.3 Graphical Design . . . . . . . . . . . . . . . . . . . . . 111

4.3.1 Pattern Document Layout . . . . . . . . . . . . 111

4.3.2 Graphical Elements Used in Patterns . . . . . . 113

4.3.3 Composition of Graphical Elements . . . . . . . 118

4.4 Summary of Cloud Computing Patterns . . . . . . . . . 121

4.4.1 Cloud Computing Fundamentals . . . . . . . . 123

4.4.2 Cloud Offerings . . . . . . . . . . . . . . . . . . 129

4.4.3 Cloud Application Architectures . . . . . . . . 136

5



Contents

4.4.4 Cloud Application Management . . . . . . . . . 142

4.4.5 Composite Cloud Applications . . . . . . . . . 145

4.5 Chapter Summary . . . . . . . . . . . . . . . . . . . . . 148

5 Application of Cloud Computing Patterns 149
5.1 Accessibility of Cloud Computing Patterns . . . . . . . 151

5.1.1 Categories of Cloud Computing Patterns . . . . 152

5.1.2 Order of Pattern Consideration . . . . . . . . . 152

5.2 Pattern-Based Design Method for Cloud Applications . 153

5.2.1 Decomposition . . . . . . . . . . . . . . . . . . 155

5.2.2 Workload . . . . . . . . . . . . . . . . . . . . . 158

5.2.3 State . . . . . . . . . . . . . . . . . . . . . . . . 160

5.2.4 Component Refinement . . . . . . . . . . . . . 164

5.2.5 Elasticity and Resiliency . . . . . . . . . . . . . 167

5.3 Chapter Summary . . . . . . . . . . . . . . . . . . . . . 171

6 Toolchain for Cloud Computing Patterns 173
6.1 Pattern Authoring Toolkit . . . . . . . . . . . . . . . . 175

6.1.1 Information Classification Template . . . . . . 176

6.1.2 Pattern Document Template and Stencil Set . . 178

6.2 Pattern Importer . . . . . . . . . . . . . . . . . . . . . . 179

6.2.1 Pattern Import Format Editor . . . . . . . . . . 179

6.2.2 Pattern Import Format Converter . . . . . . . . 182

6.3 Pattern Repository . . . . . . . . . . . . . . . . . . . . . 183

6.3.1 Pattern Document Database . . . . . . . . . . . 184

6.3.2 Pattern Browser . . . . . . . . . . . . . . . . . . 185

6.3.3 Pattern Recommender . . . . . . . . . . . . . . 187

6.3.4 Pattern Editor . . . . . . . . . . . . . . . . . . . 188

6.4 Reference Implementation Repository . . . . . . . . . . 189

6.5 Chapter Summary . . . . . . . . . . . . . . . . . . . . . 190

6



Contents

7 Validation 193
7.1 Use of Cloud Computing Patterns by Industry Partners 194

7.1.1 Daimler TSS GmbH . . . . . . . . . . . . . . . . 194

7.1.2 Dr. Ing. h.c. F. Porsche AG . . . . . . . . . . . . 200

7.2 Uninfluenced Use of Cloud Computing Patterns . . . . 203

7.2.1 Use in Research . . . . . . . . . . . . . . . . . . 204

7.2.2 Use in Industry . . . . . . . . . . . . . . . . . . 206

7.3 Chapter Summary . . . . . . . . . . . . . . . . . . . . . 208

8 Conclusions and Outlook 211
8.1 Answers to Research Questions . . . . . . . . . . . . . 212

8.2 Limitations of Cloud Computing Patterns . . . . . . . . 214

8.3 Research Opportunities . . . . . . . . . . . . . . . . . . 215

8.3.1 Research-Driven Improvement of Patterns . . . 215

8.3.2 A Pattern Language for IT Applications . . . . 216

8.3.3 Cloud Computing Patterns as Architectural

Decisions . . . . . . . . . . . . . . . . . . . . . 218

8.3.4 Pattern-Based Architectural Modeling . . . . . 218

8.4 Chapter Summary . . . . . . . . . . . . . . . . . . . . . 219

A Detailed Pattern Engineering Process 221
B Detailed Mapping of Related Patterns 223
C Toolchain for Cloud Computing Patterns 247
Bibliography 249
Acknowledgments (Danksagungen) 269

7





List of Acronyms

AADL Architecture Analysis & Design Language

ACID Atomicity, Consistency, Isolation, Durability

ADL Architecture Description Language

AG Aktiengesellschaft

API Application Programming Interface

AWS Amazon Web Services

BASE Basically Available, Soft state, Eventual consistency

BPEL Business Process Execution Language

BPMN Business Process Model and Notation

9



List of Acronyms

CAFE Composite Application Framework

CAP Consistency, Availability, Partition tolerance

CAPEX Capital Expenditures

CDN Content Delivery Network

CMS Content Management System

CPU Central Processing Unit

CQRS Command Query Responsibility Segregation

CRM Customer Relationship Management

CTO Chief Technology Officer

DB Database

DBMS Database Management System

DDOS Distributed Denial of Service

DMTF Distributed Management Task Force, Inc.

DNS Domain Name System

EAI Enterprise Application Integration

EC2 (Amazon) Elastic Compute Cloud

ERP Enterprise Resource Planning

ESB Enterprise Service Bus

GB Gigabyte

GPS Global Positioning System

HATEOAS Hypermedia as the Engine of Application State

10



List of Acronyms

HTML Hypertext Markup Language

HTTP Hypertext Transfer Protocol

IDE Integrated Development Environment

IDEAL Isolation, Distribution, Elasticity, Automated Management,

Loose Coupling

IEEE Institute of Electrical and Electronics Engineers

IP Internet Protocol

IT Information Technology

LLC Limited Liability Company

LUN Logical Unit Number

MVP Most Valuable Professional

NAT Network Address Translation

NFS Network File System

NIC Network Interface Controller

NIST National Institute of Standards and Technology

OASIS Organization for the Advancement of Structured

Information Standards

OCL Object Constraint Language

OPEX Operational Expenditure

OVF Open Virtualization Format

PHP PHP: Hypertext Preprocessor

11



List of Acronyms

PNG Portable Network Graphics

RAM Random-Access Memory

RDF Resource Description Framework

REST Representational State Transfer

RPC Remote Procedure Call

SLA Service-Level Agreement

SOA Service-Oriented Architecture

SOC Service-Oriented Computing

SQL Structured Query Language

UML Unified Modeling Language

URI Uniform Resource Identifier

URL Uniform Resource Locator

VPC (Amazon) Virtual Private Cloud

VPN Virtual Private Network

WAF Web Application Firewall

XML Extensible Markup Language

12



Zusammenfassung

Die breite Verfügbarkeit von schnellen Internetzugängen hat die Be-

deutung der geographischen Position von IT Betriebsumgebungen re-

duziert. Fortschritte in der Verwaltungsfunktionalität von Hardware

und Software erlauben es darüber hinaus IT Ressourcen sehr flexibel

und automatisiert zur Verfügung zu stellen. Das Geschäftsmodell Cloud

Computing entstand auf Basis dieser Entwicklungen. Cloud Anbieter

stellen IT Ressourcen, wie Server, Laufzeitumgebungen oder komplette

Anwendungen zur Selbstbedienung durch den Kunden über das Internet

bereit. Da diese Cloud Dienste sehr große Kundengruppen erreichen,

können Anbieter Skaleneffekte ausnutzen. Daher sind Cloud Dienste oft

schneller betriebsbereit und günstiger als gleichartige selbstverwaltete

IT Ressourcen. Insbesondere können Cloud Ressourcen oftmals flexibel

reserviert und freigegeben werden, wodurch Kunden die verwendeten

13



Zusammenfassung

Ressourcen innerhalb von Minuten dem aktuellen Bedarf ihrer Anwen-

dungen anpassen können. Die Auswirkungen dieser Eigenschaften von

Cloud Umgebungen auf die dort betriebenen Anwendungen und die re-

sultierenden Herausforderungen waren bisher größtenteils unbekannt.

Die von Anbietern bereitgestellte Dokumentation und Architekturricht-

linien waren stets auf die spezifischen Cloud Dienste zugeschnitten.

Die hier vorgestellten Cloud Computing Patterns sind untereinander

verknüpfte strukturierte Dokumente, die bewährte Lösungen zu wie-

derkehrenden Architekturproblemen beschreiben, mit denen IT Archi-

tekten bei der Erstellung von Cloud Anwendungsarchitekturen und

ihrer Verwaltung zur Betriebszeit konfrontiert werden. Diese Patterns

(dt. Muster) abstrahieren von technologiespezifischen Anbieterdoku-

mentationen und -richtlinien, sowie von existierenden Anwendungen.

Daher beschreiben sie abstrakte Architekturrichtlinien, die technolo-

gieunabhängiges und langlebiges Erfahrungswissen darstellen.

Diese Arbeit beschreibt die strukturierte Identifikation der Cloud Com-

puting Patterns, ihr textuelles und grafisches Design, um sie für Men-

schen leicht zugänglich zu machen, sowie eine Designmethode für

Ihre Anwendung. Ein Prozess zur Pattern-Entwicklung beschreibt die

Forschung die zu diesen Beträgen geführt hat. Architekturelle Eigen-
schaften von Cloud Umgebungen und Cloud Anwendungen strukturieren

die Cloud Computing Domäne für die Identifikation von Patterns. Wei-

terhin wird eine Cloud Referenzanwendung eingeführt. Ein Metamodel
für die Dokumentstruktur und die Organisation von Patterns beschreibt

das Design der Cloud Computing Patterns. Graphische Elemente und

Ihre Komposition sichern die einheitliche Darstellung der Patterns, um

Ihre Benutzerfreundlichkeit zu erhöhen. Eine Designmethode für Cloud
Anwendungen beschreibt wie IT Architekten die Cloud Computing

Patterns nutzen können, um neue Cloud Anwendungen zu erstellen.

14



Abstract

The broad availability of high-speed Internet has reduced the impact

of geographic location of hosting environments on the user experi-

ence provided by hosted applications. Advancements in hardware and

software management have enabled hosting providers to offer such IT

resources very flexibly and in an automated fashion. Cloud computing

is the business model exploiting this IT evolution. Cloud providers

offer numerous IT resources, such as servers, application runtime en-

vironments, or complete applications via self-service interfaces to be

used by customers over the Internet. As these cloud offerings target a

large number of customers, providers may leverage economies of scale.

Therefore, cloud offerings are often set up more quickly and with less

expense than respective IT resources managed by customers. Especially,

cloud resources can commonly be provisioned and decommissioned

flexibly, enabling customers to adjust resources to the current demand

15



Abstract

of their applications within minutes. The impact of these properties of

the cloud environment on hosted applications and the resulting chal-

lenges have been largely unknown. Provider-supplied documentation

and architecture guidelines have been tailored to the specific cloud

offerings supported by each provider.

The cloud computing patterns covered in this work are interrelated,

well-structured documents, capturing proven solutions to recurring

problems experienced by IT architects during cloud application archi-

tecture design and the associated runtime management. They have

been abstracted from technology-specific provider documentation and

guidelines, as well as from existing cloud applications. These patterns,

therefore, capture abstract architecture concepts to provide technology-

independent and persistent knowledge gained from experience.

This work presents the structured identification of the cloud computing

patterns, their textual and graphical design to be easily accessible by hu-

mans, and a design method for their application. A pattern engineering
process governs the research undertaken to obtain these contributions.

Architectural properties of clouds and cloud applications structure the
domain of cloud computing for pattern identification. A cloud reference
application is also introduced. A metamodel of the document structure

and organization of patterns describes the design of the cloud comput-

ing patterns. Reusable graphical elements and their composition ensure

a consistent look and feel of patterns to increase user-friendliness. A

design method for cloud applications describes how the cloud comput-

ing patterns can be used by IT architects in order to create new cloud

applications.

16



CHAPTER1

Introduction

The need for abstract architectural guidelines for cloud applications

arose when cloud computing began to gain momentum in the indus-

try [RJKG11]. Due to the industry-driven evolution of cloud comput-

ing, existing guidelines are often tailored to a specific cloud provider.

Provider-specific terminology and products obfuscated common under-

lying concepts and techniques. Consequently, in large companies the

need arose to abstract from provider-specific idiosyncrasies to obtain

provider-independent knowledge. This knowledge should be applica-

ble by IT architects and development teams regardless of the cloud

provider used in a particular scenario: an abstract description of cloud

hosting environments and cloud offerings should be provided in order

17



1 Introduction

to classify and compare cloud providers and their offerings regarding

the functional and nonfunctional requirements. These abstractions

should also guide IT architects to select applicable cloud offerings or

on-premise IT infrastructure in a given use case. Furthermore, architec-

tural best practices should be deduced from existing cloud applications

and provider-specific guidelines to describe abstractly how cloud appli-

cations should be designed, built, and managed during runtime. The

resulting cloud computing patterns are the main focus of this work.

They have previously been published as a book [FLR+14] to make them

accessible to practitioners. The current work presents the systematic

identification of these patterns and their design, and it evaluates how

they are used in practice. It summarizes the cloud computing patterns

and covers the fundamental cloud computing architectural principles

and the design of cloud applications using these patterns. By conven-

tion, names of patterns are in italics, when used in running text. Each

pattern name is followed by a number in parentheses that provides the

page number of the pattern in [FLR+14] for easier reference.

In the following section, common terminologies and conventions of

cloud computing (Section 1.1) that are used in this work are introduced.

Then, the problem domain and contributions are covered (Section 1.2).

These contributions consist of the following:

• The architectural baseline of cloud computing

• The cloud computing patterns themselves

• The organization of the cloud computing patterns necessary to

make them accessible by readers

• The design method for cloud applications based on the presented

cloud computing patterns

18



1.1 Terminology and Conventions

The overall process followed to engineer the cloud computing patterns

is introduced in Section 1.3. Its phases of pattern identification, pattern
authoring, and pattern application are detailed in the remaining sections

of this work. Section 1.4 presents an overview of the following chapters

with respect to the phases of the pattern engineering process.

1.1 Terminology and Conventions
This section provides background information about patterns and pat-

tern languages, as well as cloud applications and cloud providers. Pat-

terns are defined as human-readable documents covering proven knowl-

edge captured from experience. Pattern languages are the intercon-

nections of patterns using typed links; for example, to express general

relations, alternatives or compositions.

1.1.1 Patterns and Pattern Languages
As patterns are used in many domains, such as building architecture,

object-oriented software, and education, the concept of patterns is

perceived differently in different contexts [Cop14]. In this work, pat-
terns are defined as structured textual documents that describe ab-

stract problem-solution pairs to design problems recurring in a specific

context. The cloud computing patterns, therefore, cover problems

faced when designing, building, and managing cloud applications. Each

pattern is self-contained; thus, the pattern user may access the docu-

ments in an arbitrary order. Pattern documents reference each other

to guide the order of consideration by pointing to alternative patterns,

commonly-used combinations of patterns, etc. In contrast to techni-

cal documentation or development guidelines, which consider specific

19



1 Introduction

technologies, a pattern captures the core of a solution to a reoccurring

problem [Ale78; Fow02; GHJ94; BMR+96]. Patterns are applicable to

multiple cloud providers and can be implemented using various tech-

nologies; thus, patterns present timeless knowledge gained from praxis.

The cloud computing patterns have been abstracted from existing appli-

cations, provider services, and other sources to describe common cloud

architectural styles, components of cloud runtime environments, and

components of cloud applications. The format of these pattern docu-

ments has been homogenized to present a common look and feel.

A pattern language of a certain domain is the set of existing patterns

in this domain, their interrelations, and rules to combine them [Cop14;

Zdu07]. Therefore, the pattern language addresses the common prob-

lems in the domain in order to guide the design process. In the domain

of cloud computing, the cloud computing patterns must accordingly

provide sufficient advice to guide the user to achieve the overall de-

sign goal of creating a cloud application or restructuring an existing

one. Furthermore, these patterns need to document enough abstract

concepts to ensure that pattern names may be used for communica-

tion among humans, as suggested by Hanmer and Di Martino [Han13;

DiM14]. Similarly to the concept of patterns, other definitions of pattern

languages exist in the various domains in which patterns are used, for

example [Ale78; Bor01; MD98; BMR+96; GHJ94]. In this work, a pattern

language is considered to consistently evolve over time and to comprise

interrelated patterns addressing the design problems of the domain.

1.1.2 Cloud Applications and Cloud Providers
When discussing cloud environments, the following participant roles

and entities are often referred to. A cloud provider makes different cloud

20



1.2 Problem Domain and Contributions

offerings accessible to customers. Customers are sometimes referred to

as tenants. A tenant is a company or individual using the cloud offering.

Each tenant may have a number of associate users accessing the cloud

offering on its behalf. A cloud offering constitutes functionality for

processing, communication, or storage to be used in cloud applications.

The granularity of provided functionality is referred to as an IT resource,

i.e., a server, storage space, etc. A special type of IT resource is aWeb
service: this is an application functionality that can be accessed via a

well-defined interface over a network and that displays an “always on”

semantic [WCL+05].

A cloud application is hosted in such a cloud environment and relies

on different cloud offerings to provide its custom functionality. An

application may experience workload, which is the utilization of IT

resources originating from users accessing the application or automated

tasks handled by the application. Workload can be measured in different

forms depending on the IT resource: servers may handle more or fewer

processing tasks, storage functionality may have to handle varying

volumes of data, communication components may have to transfer

varying quantities of data, etc.

1.2 Problem Domain and Contributions
This section summarizes the research questions arising in the domain

of cloud computing that are addressed by the contributions of this work.

First, the characterizing properties of a cloud application and how to

enable them are discussed in order to develop the first contribution: an

architectural baseline for cloud computing. Then, the cloud computing

patterns presented in [FLR+14], as well as their textual and graphical

design, are covered as second and third contributions. The fourth

21



1 Introduction

contribution is the organization of these patterns into a pattern language

enabling tool support for accessing the pattern language and applying

the patterns. The architecture of the resulting toolchain supporting the

cloud computing patterns is the fifth contribution. Finally, the design

of a cloud application based on the presented patterns is covered as the

sixth contribution of this work.

1.2.1 Architectural Baseline of Cloud Computing
According to the National Institute of Standards and Technology

(NIST) [MG11], cloud computing is a business model that subsumes

methods and technologies to provide IT resources flexibly over a net-

work via a self-service interface. The NIST definition of cloud com-

puting furthermore describes three service models leading to a certain

set of properties displayed by cloud offerings (see Section 3.1.1 for a

detailed discussion). The impact of these cloud offering properties on

the architectural properties of applications hosted in these environ-

ments has, however, not been addressed by the NIST definition of cloud

computing.

Therefore, an architectural baseline for cloud computing is needed. This

describes the architectural properties of cloud applications that make

them suitable for a cloud environment. These cloud application proper-

ties can guide the design of new applications and enable the evaluation

of existing applications during a migration of an existing application to

a cloud offering.

Research Question 1 (Q-1): Architectural Baseline
How can the architectural properties of cloud applications be identi-

fied?

22



1.2 Problem Domain and Contributions

A method for the identification and abstraction of architectural properties
is required that can be used to identify these properties in the domain of

cloud computing. The method will ensure the following characteristics

with respect to the identified properties:

(i) Relevance: the architectural properties are required by applica-

tions to benefit from the domain-specific environment properties.

(ii) Distinction: the architectural properties are specific to the domain

and do not originate from a broader setting.

Contribution 1 (C-1): IDEAL Cloud Application Properties

The method for the identification and abstraction of architectural prin-

ciples has been applied to the domain of cloud computing. A set of

properties has been identified in applications, which respect the ar-

chitectural principles of cloud computing. These are the IDEAL cloud

application properties [FLR+14; FLR14]:

(i) Isolated State: State information (state of the interaction with an

application and the data handled by the application) is handled

by a minimal number of application components and preferably

in data storage functionality offered by cloud providers. This

isolation eases the scaling and resiliency with respect to failures

of the application.

(ii) Distribution: The application functionality is spread out among

multiple components to be deployed on multiple cloud resources.

As the cloud environment is by nature a large distributed system,

application functionality is distributed in a similar manner.

(iii) Elasticity: The application is enabled to add and remove required

resources during runtime. This addition and removal occurs with-

out affecting the application user.

23



1 Introduction

(iv) Automated Management: To react promptly to failures and

changed resource demand, the corresponding management opera-

tions are automated and do not involve any human interaction.

(v) Loose Coupling: The dependencies among application compo-

nents are reduced to ease addition and removal in the scope of

elasticity management and resiliency.

1.2.2 Cloud Computing Patterns
The cloud provider market has been and continues to be extremely di-

versified, as little standardization among providers exists. Each provider

uses individualized terminology, functionality, access interfaces, service

levels, and pricing. To benefit from economies of scale, cloud providers

often target a very large number of customers, thus making the offered

cloud environment a large distributed system. This distribution of IT

resources in a cloud environment forces providers to consider chal-

lenges arising from this distribution, such as connectivity loss, resource

failures, and communication latency, when designing their offerings.

The strategies employed by providers to handle these challenges affects

the complexity of the offerings’ internal structure and, thus, impacts the

price. Instead of handling these challenges themselves, cloud providers

can relay this complexity to customers. Hosted cloud applications then

have to implement the means to address these challenges; for exam-

ple, to react to failing cloud resources. As a consequence, different

nonfunctional behavior of functionally similar offerings can lead to

varying implications on customer-built applications, which hinders the

comparison of offerings.

Development guidelines for cloud applications are often provider-

specific to respect the provider’s individual terminology and behavioral

24



1.2 Problem Domain and Contributions

characteristics of provided offerings. Standardization of the cloud offer-

ings with regard to their interfaces and supported specification formats

is currently evolving [OAS12; Gro12; DMTF14; IEE15a; IEE15b], but

has not been established for the entire cloud computing market. The

aim of providers to ensure distinctive characteristics of their offerings

in order to position their products in the market especially hinders

standardization.

However, not only the comparison of cloud providers remains difficult.

The comparison of established IT infrastructures used in companies

with new cloud offerings is just as challenging. Often, the price to

provision and maintain an IT resource is the only basis for comparison,

which can make a migration to the cloud problematic if the impact of

differences in behavior on hosted applications is neglected.

Therefore, persistent and generic architectural knowledge about cloud

applications should be captured. As patterns have proven suitable for

this purpose, identification and abstraction of cloud computing patterns
is needed to enable the following: workforce and student education can

be conducted on an abstract level that remains applicable to different

providers. Such an education will be valid even as technologies and

provider offerings evolve over time. Companies can establish strategic

future-proof designs to be followed by developers. These designs are

independent of the employed technologies. Providers could become

comparable regarding the patterns they implement in their offerings and

the patterns they support in implementing applications. Functionally

similar cloud offerings can be compared on a conceptual architectural

level. To achieve this, patterns need to address the challenges of the

domain, i.e., in the domain of cloud computing, they should consider

aspects required to create a cloud application.

25



1 Introduction

Research Question 2 (Q-2): Pattern Coverage
How can it be ensured that a set of patterns enables building a cloud

application?

The structure of pattern documents is commonly followed implicitly by

pattern authors and varies in different pattern domains or even between

authors of the same domain. Such a varying presentation of knowledge,

however, hinders its perception and accessibility, as humans understand

content presented in a homogeneous fashion more easily [Pet95].

Research Question 3 (Q-3): Homogeneous Representation
How can a common textual and graphical representation of patterns

increase perceptibility?

A method for pattern engineering is needed that can be used to identify

and create patterns in a domain. It considers the collection of rele-

vant information, the identification of patterns, and their continuous

evolution. This method will involve an iterative process followed by

domain experts to ensure the following characteristics with respect to

the created patterns:

(i) Coverage: A set of patterns is found that enables building a cloud

application. Most common challenges of the domain have, there-

fore, been considered in the extracted patterns answering chal-

lenges of the domain to be of use to practitioners.

(ii) Documentation of Solutions: Rather than writing patterns from

memory, a structured documentation of existing solutions will

be used. This enables pattern users not only to rely on patterns

for their implementations, but also to access knowledge about

existing solutions.

26



1.2 Problem Domain and Contributions

(iii) Unified Domain Language: The terms by which patterns will be

described are defined to ensure thatmultiple authors use consistent

terminology to refer to the same domain elements.

(iv) Format Homogenization: Patterns are written in the same docu-

ment format, comprised of consistently-formatted sections and lay-

out. In addition to the unified domain language, similar graphical

elements that follow an explicit or implicit composition language

are used.

This list of desired characteristics is extended throughout this chapter

to address additional research questions.

Contribution 2 (C-2): Cloud Computing Patterns

Through the application of the method for pattern engineering, a cata-

log of 74 cloud computing patterns has been created and published as

a separate book [FLR+14]. As these patterns cover abstract concepts,

architectural knowledge has become usable to build applications for

different providers, thus becoming persistent over time as the cloud

offering market evolves. IT architects have been given an alphabet of

architectural concepts in the form of patterns to design applications

without considering provider-specific offerings too early in the archi-

tectural design process. Instead, IT architectures can now be described

in an abstract form to be transferred to the specific offerings of different

cloud providers.

Contribution 3 (C-3): Format of Pattern Documents and Graphical Ele-
ments

To ensure the accessibility of the cloud computing patterns by human

readers, the pattern document format has been homogenized. Based on

an analysis of existing pattern languages, the pattern document format

contains mandatory and optional sections and is used consistently by

27



1 Introduction

all cloud computing patterns. Additionally, the graphical elements

used by pattern documents have been homogenized to ensure that

common concepts, such as servers or application components, are

depicted consistently.

The cloud computing patterns can be divided into patterns that charac-

terize the cloud provider and those that describe how cloud applications

are built. Patterns characterizing the cloud provider can be used to com-

pare cloud providers as well as existing IT infrastructure regarding the

supported patterns. These can guide the decision to employ a particular

offering. They are divided into three subcategories:

• Cloud environments: These patterns abstract hosting solutions

used by providers and answer questions related to selecting a

hosting type for an application.

• Cloud service models: These patterns abstract the business mod-

els according to which providers offer IT resources and also an-

swer questions related to selecting a particular business model

for an application.

• Cloud offerings: These patterns abstract the functional and non-

functional behavior of concrete provider-supplied functionality

for processing, communication, and storage.

Cloud computing patterns that describe how a cloud application is built

are divided into three subcategories:

• Cloud application architectures: These patterns describe how

applications relying on cloud offerings should be designed and

built. They cover fundamental aspects, such as the decomposition

of application functionality into separate components. They also

reduce the dependencies between these components. Realizations

28



1.2 Problem Domain and Contributions

of application functionality for user interfaces, processing, data

handling and integration are also addressed.

• Cloud application management: These patterns describe specific

application components that do not provide application func-

tionality but execute management plans during the runtime of

the application to enable scalability or resiliency, for example.

These management components are especially important if a

cloud provider does not handle these management tasks for a

customer.

• Composite applications: These patterns describe common com-

binations of the other patterns in certain use cases; for example,

to handle periodic processing tasks in the cloud or to use cloud

resources for backup purposes.

Therefore, unlike many other patterns, not all cloud computing patterns

are implemented by the person creating a cloud computing application.

The patterns characterizing cloud providers describe offered function-

ality and provide advice regarding the selection of a particular offering.

This makes the cloud computing patterns different from patterns in

many other domains, where patterns are always considered to be ap-

plied by the human user. In the domain of cloud computing, where

applications largely rely on provider functionality, the concept of pat-

terns has also been used to address the selection of an appropriate cloud

provider.

1.2.3 Cloud Computing Pattern Language
Once cloud computing patterns have been created, they need to be

made accessible to users. As patterns are written documents, they are

29



1 Introduction

commonly presented as research papers or as larger collections in books.

Patterns reference each other textually in the respective documents to

express the notion of related patterns, alternatives, compositions, etc.

The set of patterns in a domain and their interrelations form a so-called

pattern language (see Section 1.1.1). As patterns are mainly managed

as documents, browsing them, following interrelations, and selecting

patterns for an application is currently a manual task. Following tex-

tual references between pattern documents that are spread out across

different research papers, books, and online resources is, thus, very

time-consuming and unintuitive.

Therefore, the organization of cloud computing patterns should be opti-

mized to increase the accessibility of architectural knowledge provided

by these patterns. It has to be verified that the pattern language for

cloud computing contains the relevant references between patterns

and that these references are easy to follow. Tool support should be

established to organize patterns, and to enable references and queries.

This enables pattern users to find applicable patterns and navigate the

pattern language. In addition, a design process should be described

that captures an order of pattern consideration based on the use case at

hand; for example, the creation of a new cloud application.

Research Question 4 (Q-4): Pattern Organization
How can patterns be organized and presented so that users find rele-

vant patterns quickly?

The method for pattern engineering will be extended to ensure the fol-

lowing additional properties:

(i) Pattern Language Structure: Patterns and their interrelations form

a directed graph that can guide readers during the selection of

patterns.

30



1.2 Problem Domain and Contributions

(ii) Pattern Organization Tool: The patterns are stored in a pattern

management system that allows queries to support search and

recommendation of patterns.

Contribution 4 (C-4): Pattern Language Metamodel

In addition to the pattern document and used graphical elements, the

homogenization of pattern interrelations is described by a pattern lan-

guage metamodel. It describes the semantics of references among pat-

terns; for example, to express refinements, alternatives, or compositions.

While doing so, this metamodel remains configurable to support vari-

ous pattern domains. It has been used to describe the cloud computing

pattern language with the specific pattern document structure, relevant

link types between patterns, and design paths to enable navigation

between patterns.

Contribution 5 (C-5): Pattern Organization Tool

The presented pattern language metamodel forms the basis of the tool

support for pattern organization, recommendation, and application.

The tool architecture describes a platform to create and organize pat-

terns. Users can access this platform to find patterns, follow pattern

interrelations, and select patterns for use.

1.2.4 Design Method for Cloud Applications
The pattern language contains references among patterns of different

types to enable navigation. The order of patterns to be considered is then

described implicitly in the pattern language. Commonly, a refinement

process is followed by first considering general patterns for the overall

solution structure and then refining individual aspects iteratively. The

cloud computing patterns also have such an implicit ordering in which

31



1 Introduction

patterns should be considered. First, deployment models and offerings

are selected, then application components are built on these offerings

and integrated. Finally, these components are managed during runtime.

The resulting composition of patterns is specific to the considered use

case. To introduce additional guidance to pattern users, the common

task to create a new cloud application can be made more explicit. The

implicit ordering of patterns and the refinement phases are described

as an explicit process to be followed during IT architecture design. For

each step of the process, a set of patterns is given that is commonly used.

These patterns may be used as entry points to the pattern language in

order to identify the use case-specific pattern compositions by following

the references among patterns.

Research Question 5 (Q-5): Pattern-Based Design
How can the selection of patterns be guided to create the architecture

of a cloud application?

A pattern-based designmethod for cloud applications is needed to describe
an overall order in which the cloud computing pattern language should

be considered during the design of a new application.

Contribution 6 (C-6): Pattern-Based Design Method for Cloud Applica-
tions

This method describes the order of considerations for the cloud com-

puting patterns in different use cases:

(i) Development of new cloud applications: A new application will

be developed using the most suitable cloud provider.

(ii) Restructuring of an existing application: The concepts of cloud

computing can also be used in non-cloud applications to increase

performance, availability, scalability, or other desirable application

properties.

32



1.3 Pattern Engineering Process

Pa

tte
rn Identification

Pattern Authorin
g

Pa

tte
rn Application

Domain
Expert

Pattern
Author

IT Architect

Figure 1.1 – Pattern engineering process and participant roles (adapted
from [FBBL14])

1.3 Pattern Engineering Process

The identification, authoring, and application of the cloud computing

patterns follows the pattern engineering process depicted in Fig. 1.1. A

detailed view of the process and the steps comprising each phase are

given in Appendix A. This process was designed when the investigation

of cloud computing patterns was initiated and presents the method

for the identification and abstraction of architectural principles required

to answer Q-1: “Architectural Baseline”. The steps comprising each

phase of the process have been followed to identify, author, and apply

the cloud computing patterns. The process evolved into the version

presented in this work and has also been generalized to be applicable

to pattern engineering efforts in various domains [FBBL14].

33



1 Introduction

The set of patterns identified in a domain evolves over time. Thus,

the overall pattern engineering process iterates indefinitely to identify

new patterns and refine existing ones continuously. Each of the phases

for pattern identification, pattern authoring, and pattern application

comprising the pattern engineering process is also iterative. This is due

to the fact that assumptions and decisions made during earlier iterations

of a phase must subsequently be revised and adjusted. Each phase of

the pattern engineering process is handled by a user who performs the

steps prescribed by each phase. Each user role can be fulfilled by an

individual or a group of persons.

A domain expert handles the pattern identification phase. During this

phase, he
1
defines the domain and its fundamental characteristics. Also,

the information to be collected about existing solutions, provider docu-

mentation, and other details is structured, and collection formats are

negotiated. This is especially important if multiple persons are involved

in the information collection phase to homogenize their work and re-

sults. In the scope of the cloud computing patterns, characteristics of

cloud environments and cloud applications have been identified. A list

of existing applications and providers to be analyzed has been compiled,

followed by a collection and classification of these sources.

The pattern author analyzes the collected information to identify recur-

ring patterns. These are then drafted and revised in several iterations

with an experienced pattern author [Har99] and in a larger author

group – so-called writers’ workshops [LAA+04]. Pattern documents

follow a certain structure and reference other pattern documents using

well-defined interrelations. This pattern format and reference types are

also designed during this phase. In the scope of the cloud computing

1

For reasons of readability, the male form is used throughout this work; however, the

female form is also always implied.

34



1.4 Chapter Summary

patterns, a UML
2
-based metamodel and OCL

3
constraints have been

used to define the pattern document structure and references among

pattern documents. Furthermore, the graphical elements used in pat-

tern documents have been homogenized to create a common look and

feel.

An IT architect or the more general pattern user is the main beneficiary

of the created patterns and employs them during the pattern appli-

cation phase. This phase covers different means to make the cloud

computing pattern language accessible by guiding pattern users during

the consideration of patterns for their use case. In the scope of the

cloud computing patterns, the abovementioned metamodel ensures

their organization to be made accessible to IT architects. Furthermore,

the pattern-based design method describes how to create a new cloud

application and the patterns that should be considered.

1.4 Chapter Summary
This chapter has introduced a common terminology and has provided

an overview of the research questions addressed by this work. The

contributions answering these research questions are supported by

the peer-reviewed publications shown in Table 1.1. The remainder of

this work is structured with respect to the pattern engineering process

introduced in the previous section:

2http://www.uml.org/
3http://www.omg.org/spec/OCL/

35

http://www.uml.org/
http://www.omg.org/spec/OCL/


1 Introduction

Chapter 2: Related Work
This chapter covers related work on the identification and authoring of

patterns in general and on other patterns for cloud computing. Existing

guidelines on the identification, authoring, and improvement of pat-

terns are integrated with the pattern engineering process. Other cloud

computing patterns are compared with the patterns presented in this

work.

Chapter 3: Identification of Patterns for Cloud Computing
This chapter addresses the research questions Q-1: “Architectural Base-

line” and Q-2: “Pattern Coverage”. The fundamental architectural prop-

erties enabling cloud applications to benefit from a cloud environment

are derived from the properties of the cloud environment leading to

the contribution C-1: “IDEAL Cloud Application Properties”. These

architectural properties of cloud applications are compared with other

architectural styles: distributed systems in general, messaging archi-

tectures, REST architectures, and service-oriented architectures. A

reference cloud application and a list of architectural challenges are

used to identify relevant provider documentation and guidelines, as

well as existing applications and patterns from other domains. Based

on this structuring, the cloud computing patterns have been identified

in information sources.

Chapter 4: Design of Cloud Computing Patterns
This chapter addresses the research questions Q-3: “Homogeneous Rep-

resentation” and Q-4: “Pattern Organization”. It describes the cloud

computing patterns with respect to their document structure (C-3: “For-

mat of Pattern Documents and Graphical Elements”), the types of inter-

relations among patterns (C-4: “Pattern Language Metamodel”), and the

graphical elements that are employed. Therefore, this chapter covers

the pattern metamodel (format) and the pattern language metamodel

(references). These models have been summarized into a single model

36



1.4 Chapter Summary

for better accessibility. A summary of all cloud computing patterns is

also given (C-2: “Cloud Computing Patterns”).

Chapter 5: Application of Cloud Computing Patterns
This chapter addresses the research questions Q-4: “Pattern Organi-

zation” and Q-5: “Pattern-Based Design”. It extends the organization

of pattern documents by considering how they can be made acces-

sible to pattern users. Then, it covers a pattern-based development

method (C-6: “Pattern-Based Design Method for Cloud Applications”)

for cloud applications using the cloud computing patterns to create new

applications.

Chapter 6: Toolchain for Cloud Computing Patterns
This chapter covers the tools supporting the creation, organization, and

recommendation of cloud computing patterns (C-5: “Pattern Organi-

zation Tool”). It describes a pattern authoring toolkit to be used by

pattern authors in order to identify and create patterns. These patterns,

as well as existing ones, may then be imported into a wiki-based pattern

management system, where they can be further refined, searched, and

recommended to pattern users.

Chapter 7: Validation
This chapter investigates the applicability of the cloud computing pat-

terns and the pattern-based design method, as well as supporting tools

in two use cases of industry partners. Also, uses of the cloud computing

patterns in the scientific research community and in industry settings

are investigated.

Chapter 8: Summary and Outlook
This chapter reflects on the presented research contributions. It dis-

cusses related work that may be combined with the cloud computing

patterns considered in this work, which may open new scientific re-

search areas.

37



1 Introduction
Table 1.1 – Peer-reviewed publications in support of the contributions

Q-1: “Architectural Baseline”: How can the architec-

tural properties of cloud applications be identified?

C-1: “IDEAL Cloud Application

Properties”

C. Fehling et al. Cloud Computing Patterns. Springer, 2014 [FLR+14]*
C. Fehling and R.Mietzner. “Composite as a Service: Cloud Application Structures, Provision-

ing, andManagement.” In: it - Information TechnologyMethoden und innovative Anwendungen
der Informatik und Informationstechnik 53.4 (2011), pp. 188–194 [FM11]

Q-2: “Pattern Coverage”: How can it be ensured that

a set of patterns enables building a cloud application?

Q-3: “Homogeneous Representation”: How can a

common textual and graphical representation of pat-

terns increase perceptibility?

C-2: “Cloud Computing Patterns”

C-3: “Format of Pattern Documents

and Graphical Elements”

C. Fehling et al. Cloud Computing Patterns. Springer, 2014 [FLR+14]*
C. Fehling et al. “A Process of Pattern Identification, Extraction, and Application.” In: Proceed-
ings of the European Conference on Pattern Languages of Programs (EuroPLoP). 2014 [FBBL14]
C. Fehling et al. “An Architectural Pattern Language of Cloud-based Applications.” In: Pro-
ceedings of the Conference on Pattern Languages of Programs (PLoP). 2011 [FLR+11]
C. Fehling et al. “Service Migration Patterns.” In: IEEE International Conference on Service
Oriented Computing and Application (SOCA). 2013 [FLR+13]
C. Fehling et al. “Flexible Process-based Applications in Hybrid Clouds.” In: Proceedings of
the IEEE International Conference on Cloud Computing (CLOUD). 2011 [FLS+11]
Q-4: “Pattern Organization”: How can patterns be or-

ganized and presented so that users find relevant pat-

terns quickly?

C-4: “Pattern Language Meta-

model”

C-5: “Pattern Organization Tool”

C. Fehling et al. “PatternPedia – Collaborative Pattern Identification and Authoring.” In: Pro-
ceedings of Pursuit of Pattern Languages for Societal Change (PURPLSOC) – Preparatory Work-
shop. 2014 [FBFL14]
C. Fehling et al. “Capturing Cloud Computing Knowledge and Experience in Patterns.” In:

Proceedings of the IEEE International Conference on Cloud Computing (CLOUD). 2012 [FEL+12]
Q-5: “Pattern-Based Design”: How can the selection

of patterns be guided to create the architecture of a

cloud application?

C-6: “Pattern-Based Design

Method for Cloud Applications”

C. Fehling et al. “Pattern-Based Development and Management of Cloud Applications.” In:

Future Internet 4 (2012), pp. 110–141 [FLRS12]
C. Fehling, F. Leymann, and R. Mietzner. “A Framework for Optimized Distribution of Ten-

ants in Cloud Applications.” In: Proceedings of the IEEE International Conference on Cloud
Computing (CLOUD). 2010 [FLM10]

C. Fehling, F. Leymann, and R. Retter. “Your Coffee Shop Uses Cloud Computing.” In: Internet
Computing, IEEE 18.5 (2014), pp. 52–59 [FLR14]

* The book containing the cloud computing patterns supports two contributions.

38



CHAPTER2

Related Work

This chapter focuses on two groups of related work: First, existing

identification and authoring techniques for patterns
4
that have been

integrated with the pattern engineering process (Section 2.1) are sum-

marized. Second, other patterns in the domain of cloud computing are

compared with the cloud computing patterns presented in this work

(Section 2.2).

Other related work is covered in other chapters, where relevant. Archi-

tectural properties of clouds and architectural styles that are related to

4

Refer to Section 1.1.1 for a definition of the pattern concept used in this work.

39



2 Related Work

cloud computing have been reviewed as part of the pattern engineer-

ing process and are covered Section 3.2. In these sections, the impact

of cloud application properties and the relation of other architectural

styles to the architectural principles of cloud applications are discussed

in detail. Similar, existing patterns of other architectural styles related

to cloud computing, for example, patterns for software architecture

[BMR+96], object-oriented applications [GHJ94], and messaging ap-

plications [HW03], are summarized in Section 3.5 as they have been

considered during the information collection phase of the pattern en-

gineering process. Design methods related to the creation of cloud

application architectures are mapped to the phases of the pattern-based

design method for cloud applications covered in Section 5.2. An intro-

duction to the topic of cloud computing and its history is not given here,

but can be obtained from [FLR+14]. A discussion of related work that

uses the cloud computing patterns is covered as part of the evaluation

in Section 7.2.

2.1 Guidelines for Pattern Research
The pattern engineering process introduced in Section 1.3 integrates ex-

isting guidelines on the identification and authoring of patterns. These

are used without modification and considered during the respective

activities. The existing works help pattern authors to write pattern

documents and review them in consultation with experienced pattern

authors.

All of these guidelines covered in this section have been integrated into

the pattern authoring phase of the pattern engineering process detailed

in Chapter 4.

40



2.1 Guidelines for Pattern Research

2.1.1 Pattern Identification and Authoring
Hanmer [Han12] introduces patterns that involve mining other pat-

terns. These describe considerations of how to structure an overall set

of patterns, connect them, and ensure that the problems covered by

the patterns address relevant problems of the considered domain. Well-

hausen and Fießer [WF11] describe how to make pattern documents

easily accessible. The target audience is mainly authors who are new

to pattern writing. Considered topics include the structure of pattern

documents and the semantics of the comprising sections. This structure

has also been respected in the pattern language metamodel covered in

Section 4.2. Furthermore, these authors provide motivation to consider

how a pattern reader will access the pattern document: they describe

how the relevant content and applicability of the pattern to a given use

case can be identified quickly.

Meszaros and Doble [MD98] also describe best practices for pattern

authors on the writing of pattern documents. These best practices

are themselves captured as patterns, forming a “pattern language for

pattern writing”. The authors have also covered the topic of the pat-

tern document structure, which has influenced the pattern language

metamodel (see Section 4.2). Furthermore, they focus on the naming of

patterns and the naming of references among these patterns to ensure

that the used terms are comprehensible and that these terms structure

the pattern language adequately to the design process used in the do-

main. These naming conventions have also significantly influenced all

cloud computing patterns and have been intensively discussed during

shepherding and writers’ workshops: pattern names should capture the

essence of the patterns described and should be easily usable within

sentences to contribute to the natural language of IT architects. In

41



2 Related Work

particular, nouns are preferred over verbs in pattern names so that

patterns can be easily referred to as entities in sentences.

2.1.2 Iterative Pattern Review
Once the initial version of a pattern document has been drafted, it

should be reviewed by a larger community. This is especially important

to ensure an adequate level of abstraction: the pattern document has to

describe concepts generically enough to be applicable in different use

cases, while remaining understandable by readers of different skill levels.

Harrison [Har99] reviews the best practices to be applied during this

iterative review - called shepherding - in a pattern format. During this

process, an experienced pattern author (shepherd) gives feedback to the

pattern author (sheep) on different aspects of the pattern documents; for

example, structure, style, and content during multiple review iterations.

The “language of shepherding” describes how the shepherd and the

sheep interact and which topics they consider in each iteration of the

shepherding process.

2.1.3 Participating in Pattern Conferences
Conferences following the Pattern Languages of Programs (PLoP) for-

mat are very interactive due to the writers’ workshops that are sched-

uled during these events and result in a significant amount of feedback

from the community. In order to prepare new participants, Lucrédio

et al. [LAA+04] provide patterns related to the attendance of such con-

ferences. The authors describe situations that may occur, problems that

may arise, and how to resolve them. Another aspect is the preparation

42



2.2 Other Cloud Computing Patterns

for conferences that help attendees to prepare the feedback they will

provide to other authors during writers’ workshops.

2.2 Other Cloud Computing Patterns
The PLoP pattern community has developed other successful patterns

for the IT domain, such as for object-oriented programming [GHJ94;

BMR+96], message-based enterprise application integration [HW03],

fault-tolerant systems [Han07], or distributed control systems [EKLR14].

This pattern community has been surveyed to identify existing cloud

computing patterns.

As only a few patterns for cloud computing could be identified at PLoP

conferences, books and online resources have also been searched for

larger pattern catalogs related to cloud computing. Four pattern cat-

alogs on cloud computing have been identified and compared with

the cloud computing patterns presented in this work. Most of these

patterns do not cover known uses for more than one cloud provider, or

provide only examples and scenarios rather than known uses. In some

cases, the presented patterns are still in development; thus, known uses

and examples are necessarily omitted completely due to the early ver-

sion status of the respective patterns. All four catalogs were published

only a few weeks prior to submission of the cloud computing patterns

book [FLR+14] for copyediting or during the copyediting process. The

first version of the cloud computing patterns [FLMS11] and their dis-

cussion at research conferences [FLR+11; FEL+12] were all published

one to two years prior to these other catalogs.

A possible extension of the cloud computing patterns by integration

with these catalogs was considered during their evaluation. For all

43



2 Related Work

patterns contained in the other catalogs, only limited redundancy with

the cloud computing patterns [FLR+14] has been found to enable this

identification of relations and extensions. An integration of these pat-

tern catalogs with the cloud computing language could be promising,

based on the presented mapping. Selected pattern catalogs are reviewed

in the following section.

2.2.1 Cloud Computing Patterns of PLoP Conferences
Hashizume, Yoshioka, and Fernandez [HYF11] cover one misuse pat-

tern for public clouds (62): an attacker uploads a virtual server image

that other customers may use. Such “marketplaces” where customers

may share virtual machine images are quite common. In this case, the

attacker, however, has added malicious functionality to the image. This

could be, for example, a monitoring tool that sends data handled by the

virtual server to the attacker. Hashizume, Fernandez, and Larrondo-

Petrie [HFL12] cover similar patterns for infrastructure as a service,

platform as a service, and software as a service. In contrast to the respec-

tive cloud computing patterns, IaaS (45) , PaaS (49) , and SaaS (55), they
detail the structure and behavior of these offerings using UML

5
models.

Encina, Fernandez, and Monge [EFM14] later extend the misuse pattern

for cloud computing by describing how cloud resources may be used for

denial-of-service attacks. Fernandez, Yoshioka, andWashizaki [FYW14]

describe two patterns for the building of firewalls in order to control

network access to cloud resources. They seem to extend more general

security patterns [SFH+06], which have also been used as information

sources for the cloud computing patterns considered in the present

work (see Section 3.5.2). Dara [Dar14] describes two patterns address-

ing how to enable symmetric and asymmetric encryption for access to

5http://www.uml.org/

44

http://www.uml.org/


2.2 Other Cloud Computing Patterns

a cloud provider. Finally, Hanmer [Han14] provides for fault-tolerant

cloud software – a revision of the more generic patterns of fault-tolerant

software [Han07]. These revisions for the cloud, especially, reference

the cloud computing patterns [FLR+14] presented here.

2.2.2 Cloud Design Patterns (Amazon Web Services)
Authors Ken Tamagawa (Copyright of the site is held

by AmazonWeb Services LLC or its affiliates.)

URL http://en.clouddesignpattern.org

Publication Date Most of the patterns have been last modified

on or around November 28, 2012.

Number of Patterns 47

The cloud design patterns for Amazon Web Services describe com-

mon designs for applications running on the Amazon cloud and are

claimed to be obtained from existing applications running at this cloud

provider.

A detailed mapping of the presented patterns can be found in Table B.1

in Appendix B. Of the presented patterns, 25 refine a complete cloud

computing pattern or an aspect of a cloud computing pattern for the

Amazon Web Services (AWS) cloud. Therefore, they cover the technical

details related to how the abstract solution given by a cloud computing

pattern can be implemented using the Amazon cloud. The remaining

22 patterns provide an extension of the cloud computing patterns: they

cover technical best practices related to how to use the Amazon cloud

offerings. Most (15) of these extensions can be mapped to an existing

cloud computing pattern; thus, they describe technical practices that

seem relevant in the scope of the respective pattern. It is, however,

45

http://en.clouddesignpattern.org


2 Related Work

unclear whether these best practices are also employed by any other

cloud provider.

Therefore, the provided mapping of the cloud design patterns (AWS) to

the cloud computing patterns can be employed by a pattern user who

decides to base his application on Amazon’s platform. An abstract archi-

tecture described using the cloud computing patterns can be refined for

Amazon using the provided mapping. The 22 patterns that extend the

cloud computing patterns should be investigated in the future for use at

other cloud providers and for use in a variety of cloud applications. If

such uses can be identified, a provider-independent abstraction of these

patterns could be feasible in order to add them to the cloud computing

pattern language.

2.2.3 Cloud Design Patterns (Microsoft Azure)
Authors Alex Homer, John Sharp, Larry Brader,

Masashi Narumoto, Trent Swanson

URL http://msdn.microsoft.com/en-

us/library/dn568099.aspx

Publication Date 2014

Number of Patterns 34

The cloud design patterns for Microsoft Azure provide a set of patterns

for cloud applications considering distributed systems in general, cloud

applications, and Microsoft Azure. While these patterns clearly focus

on Azure, the authors claim that presented concepts are generally

applicable. Known uses in existing applications or usability of the

presented patterns in other cloud environments than Microsoft Azure

are not covered in the current version.

46

http://msdn.microsoft.com/en-us/library/dn568099.aspx
http://msdn.microsoft.com/en-us/library/dn568099.aspx


2.2 Other Cloud Computing Patterns

A detailed mapping of the cloud design patterns for Windows Azure to

the cloud computing patterns presented in Section 4.4 can be found in

Table B.2 in Appendix B. Of the design patterns for Windows Azure, 11

provide a refinement of a cloud computing pattern or an aspect thereof

to the Windows Azure platform. Therefore, these 11 patterns describe

how a cloud computing pattern can be implemented using Windows

Azure technologies. One cloud design pattern of data replication and

synchronization generalizes several of the cloud computing patterns

by discussing the need for data replication and data synchronization

in general. The generalized cloud computing patterns only discuss

these topics for use in a specific context where data replication or

synchronization is needed. The remaining 22 cloud design patterns

for Windows Azure extend the cloud computing patterns. Mostly,

these patterns cover concepts of database management systems and

messaging applications. These concepts are not explicitly covered by

the cloud computing patterns. Instead, individual cloud computing

patterns reference the respective existing related work: Hohpe and

Woolf [HW03] for messaging applications, and Codd; Silberschatz,

Korth, and Sudarshan; and Elmasri and Navathe [Cod70; SKS10; EN10]

for databases.

Similar to the cloud design patterns for AWS, the mapping presented

in this work can be considered by a pattern user who needs to re-

fine an abstract architecture of the cloud computing patterns to the

Microsoft Azure platform. The extending cloud design pattern for Win-

dows Azure should be investigated in the future for use with different

cloud providers and in multiple cloud applications to identify new ab-

stract patterns. These extending patterns cover the following topics:

(i) controlling the maximum resources that are made available to an

application instance, (ii) allowing direct access to storage offerings by

giving users the opportunity to bypass the application in order to in-

47



2 Related Work

crease performance, and (iii) legal requirements and regulations when

hosting an application in multiple data centers.

2.2.4 Cloud Architecture Patterns
Authors Bill Wilder

URL http://oreil.ly/cloud_architecture_

patterns

Publication Date September 2012

Number of Patterns 11

The cloud architecture patterns are considered to be generally applicable

to cloud computing applications. Their exemplary use in a photo-

sharing application throughout the book considers Windows Azure as

the development platform. Other cloud providers are not considered.

A detailed mapping of the cloud architecture patterns to the cloud com-

puting patterns can be found in Table B.3 in Appendix B. Three of the

cloud architecture patterns are composed of multiple cloud comput-

ing patterns, and therefore cover the concepts of all of these patterns

in a single pattern. Two of these compositions provide extensions by

detailing different pricing models of cloud providers and heuristics

addressing how many auxiliary resources should be provisioned to

cope with sudden workload increases. Five other patterns provide more

extension points by discussing (i) the graceful shutdown of resources

in detail and (ii) guidelines for synchronous interactions. The cloud

computing patterns currently assume that resources could potentially

fail at any time, and accordingly focus on asynchronous interactions

instead. Finally, three of the cloud architecture patterns are similar to

or variants of the mapped cloud computing patterns.

48

http://oreil.ly/cloud_architecture_patterns
http://oreil.ly/cloud_architecture_patterns


2.2 Other Cloud Computing Patterns

2.2.5 CloudPatterns.org
Authors Thomas Erl, Zaigham Mahmood,

Amin Naserpour, Ricardo Puttini

URL http://cloudpatterns.org/

Publication Date May 2013 (first book), Announced for 2015

(second book), and continuously online.

Number of Patterns 88

The patterns provided on the website http://cloudpatterns.org/ are

partially sourced from the book Cloud Computing Concepts, Technol-
ogy and Architecture by Thomas Erl, Zaigham Mahmood and Ricardo

Puttini [EPM13]. The other patterns available online are authored by

Thomas Erl and Amin Naserpour. The online version is often quite

brief (one sentence per section of the pattern sections: problem, solu-

tion, application, etc.) and is likely to be detailed in the book Cloud
Computing Design Patterns by Thomas Erl and Amin Naserpour, which

had been announced for publication in 2015 at the time of this writing.

The online catalog is divided into 20 mechanisms, 55 design patterns,
and 13 compound patterns. The mechanisms do not follow a pattern

format but cover basic concepts and techniques relevant to cloud com-

puting. These are then referenced from the design patterns. In the

current version, the compound patterns give a list of design patterns

relevant to their implementation without any additional explanatory

text. The covered concepts are independent of any particular cloud

provider. Examples and applications are covered in generic case studies

that should be applicable to different cloud providers and technologies.

A concrete implementation of patterns using a specific technology is

not described.

49

http://cloudpatterns.org/
http://cloudpatterns.org/


2 Related Work

A detailed mapping of these patterns to the cloud computing patterns

can be found in Table B.4 in Appendix B. Six of the patterns of cloudpat-

terns.org generalize concepts of cloud computing patterns and describe

them in a more abstract setting. Eight of the mechanisms and design

patterns available at cloudpatterns.org refine an aspect of a mapped

cloud computing pattern. The concepts covered in three patterns seem

similar to the contents of the cloud computing patterns. With respect

to the patterns elastic infrastructure (87) and elastic infrastructure (87),
the catalog of cloudpatterns.org uses more patterns to detail the com-

ponents of these cloud offerings. This is reasonable, as most of the

design patterns of cloudpatterns.org address the concepts of how a

cloud itself can be created, and thus, how the components of cloud

offerings function internally.

Thirty-five patterns and mechanisms describe the inner workings of

clouds in greater detail and, thus, are categorized as being outside of the

scope of the cloud computing patterns. Covered topics of virtualization

technology, storage area networks, and provisioning of physical hard-

ware are used by the cloud providers to establish a cloud environment.

The cloud computing patterns, on the other hand, focus on the archi-

tecture of cloud applications, and describe how cloud offerings behave

and when they should be used. The patterns of cloudpatterns.org are

still evolving. Therefore, the mapping to the cloud computing patterns

was not done for the 12 compound patterns, as only dependencies to

other patterns are given at the time of this evaluation. The same was

the case for some design patterns that are not contained in the available

book [EPM13].

The current focus of the patterns of cloudpatterns.org on cloud-building

technologies, concepts, and architectures motivates their mapping to

the cloud computing patterns, which focus on building applications

for the cloud – not the cloud itself. Through the mapping presented in

50



2.3 Chapter Summary

this work, the joint set of patterns can be used both by those building

clouds and those that build applications hosted in these clouds. In

particular, in a corporate setting, where a cloud environment is created

by one department and development is handled by another department,

this integration may govern the communication between IT architects,

developers, and operation technicians.

2.3 Chapter Summary
The presented methodologies, patterns, and guidelines of the pattern

research community have been followed to identify the cloud computing

patterns presented in Section 4.4. In particular, these concepts have

been integrated into the pattern engineering process (see Section 1.3)

organizing the overall identification, authoring and application of the

cloud computing patterns presented in this work. A literature survey

of past conferences of Pattern Languages of Programs (PLoP) and their

European, Asian, and Indian versions has shown that cloud computing

has not been investigated intensively by this community. Also, the

patterns of this community have been identified that reference the

cloud computing patterns introduced by this work.

Patterns in the domain of cloud computing, which were created in-

dependently from PLoP conferences, have been shown to be mostly

provider-centric by focusing on a single cloud provider in the given

known uses and examples. All of the investigated catalogs have shown

redundancies and extensions with respect to the topics addressed by the

cloud computing patterns. Therefore, a mapping of these catalogs to

the cloud computing patterns has been beneficial to point to provider-

specific patterns or to patterns describing how the clouds themselves

are built.

51





CHAPTER3

Identification of Patterns for Cloud Computing

This chapter describes how the domain of cloud computing is structured

in this work to ensure the coverage of the important challenges of this

domain in the presented cloud computing patterns. This is done by

addressing research questions Q-1: “Architectural Baseline” and Q-2:

“Pattern Coverage”.

To answer Q-1: “Architectural Baseline”, the architectural properties

of clouds are investigated to derive the requirements for cloud applica-

tions, enabling them to benefit from cloud environments. Architectural

principles fulfilling these requirements are presented and compared

with other architectural styles that are related to cloud computing.

53



3 Identification of Patterns for Cloud Computing

Pattern Authorin

g

Pa

tte
rn Application

Pattern Authorin

g

Pa

tte
rn Apppplication

Pa

tte
rn Identification

Domain 

Coverage 

Format Design

Review

Figure 3.1 – Information collection phase for cloud computing pat-
terns [FBBL14]

To answer Q-2: “Pattern Coverage”, a reference cloud application is

introduced to abstractly describe typical components of a cloud applica-

tion and a cloud environment. The cloud computing patterns describe

these components comprising cloud applications and their runtime

environment. Furthermore, a list of architectural topics affected by the

properties of cloud computing is given to structure the identification of

patterns.

The structure of this chapter is outlined according to the pattern iden-

tification phase of the pattern engineering process detailed in Fig. 3.1.

Each step of this phase is briefly summarized here to illustrate how the

sections of this chapter relate to the performed steps. Refer to [FBBL14]

for a detailed discussion of these steps.

54



Domain Definition: This step lays the foundation for pattern identifi-

cation by characterizing the investigated domain. Terminologies and

concepts are collected and defined to establish a common knowledge

base for all participants working on pattern identification. In Section 3.1,

the architectural principles of cloud computing have been reviewed

to derive the properties of cloud applications, enabling them to ben-

efit from these principles. Section 3.2 compares these architectural

properties of cloud applications with other related architectural styles:

distributed systems, messaging, REST, and service-oriented architec-

tures.

Coverage Consideration: This step ensures that relevant architectural

challenges and topics are considered during pattern identification. It is

investigated how information sources, from which patterns are to be

identified, address these challenges and topics in their concrete environ-

ment; for example, within the scope of a particular cloud provider. To

ensure coverage of the cloud computing patterns, Section 3.3 introduces

a reference cloud application that characterizes the components of a

cloud environment and a cloud application hosted in this environment.

Section 3.4 covers the impact of cloud computing on architectural topics,

thus making these topics candidates for pattern identification.

Information Format Design: During this step, the pattern authors agree

upon a data format in which existing information sources are to be

gathered. For the cloud computing patterns, the information sources

were documents: provider guidelines, documentation on existing appli-

cations, books containing existing patterns of similar domains, research

papers, etc. These sources were organized in a table format to be clas-

sified and summarized during later steps of the identification phase.

The pattern authoring toolkit supporting the collection of information

sources in this form is discussed in greater detail in Section 6.1.

55



3 Identification of Patterns for Cloud Computing

Information Collection: During this step, information sources are col-

lected, in the scope of the cloud computing patterns, by conducting

a literature survey. The reference cloud application and the cloud ar-

chitectural principles have guided this step for the cloud computing

patterns: each information source, such as provider documentation,

has been reviewed to identify whether it addressed a component of the

reference cloud application or described how to enable an architectural

property of cloud applications. Section 3.5 presents an overview of the

considered information sources. All information sources that were used

to describe the cloud computing patterns have been referenced as a

known use of the respective pattern abstracted from them. Therefore,

the complete list of information sources comprises the bibliography

of [FLR+14].

Information Review: During this step, the information sources are clas-

sified and partially abstracted as a first step toward identification of

patterns. The classification of information sources for cloud computing

patterns has again been governed by the cloud reference application

and the architectural properties of cloud applications. This has enabled,

for example, a first grouping of cloud provider offerings with respect

to the functionality they offer to the cloud reference application. Han-

mer [Han12] generally describes how tomine patterns from information

sources and structure the resulting set of patterns. This approach has

also been followed to identify the cloud computing patterns during this

step of the pattern engineering process.

3.1 Architectural Principles of Cloud Computing
Properties of clouds and architectural styles commonly used in cloud ap-

plications are evaluated in this section to deduce the architectural prin-

56



3.1 Architectural Principles of Cloud Computing

ciples of cloud applications. The definition of cloud computing released

by the National Institutes of Standards in Technology (NIST) [MG11]

is used to establish the proposed architectural properties specific to

cloud applications: isolated state, distribution, elasticity, automated

management, and loose coupling (IDEAL properties). Furthermore, the

properties of data handled by cloud applications are shown to have a

major impact on the architecture of cloud applications.

3.1.1 Cloud Computing Properties
The NIST defines cloud environments to have five essential charac-

teristics [MG11]. Furthermore, providers are defined to use one of

three service models, and one of four cloud deployment types. The five

essential characteristics of cloud environments are:

On-Demand Self-Service: Customers access cloud offerings indepen-

dently of any human employed by the provider. Self-service is com-

monly realized using human-accessible Web interfaces or application

programming interfaces (API). Customers can access these interfaces at

their own pace and independently of the provider’s business hours.

Broad Network Access: The bandwidth of the network connection be-

tween customer and provider is large enough to ensure an acceptable

latency and throughput. This makes the performance experienced by

customers independent of the geographic location of the provider’s

data center.

Resource Pooling: The cloud provider exploits economies of scale by

sharing IT resources among customers. Sharing of resources also en-

ables flexible resource use by customers, as resources no longer needed

by one customer can serve others.

57



3 Identification of Patterns for Cloud Computing

Rapid Elasticity: Customers can provision and decommission offered IT

resources quickly and at any time. Self-service interfaces and resource

pooling forms the basis for this flexible resource management.

Measured Service: Monitoring of resource use enables transparent billing

and a broad range of pricing options. Many providers charge customers

only for the resources that they actually use and do not expect fixed

monthly or upfront investments. Still, monthly or yearly pricing op-

tions are sometimes also available. Due to this property, clouds enable

customers to reduce large upfront investments – capital expenditures

(CAPEX) – and move to operational costs – operational expenditures

(OPEX).

In an environment displaying these five characteristics, cloud providers

follow one or a combination of the following service models:

Infrastructure as a Service (IaaS): The provider offers processing, storage,
and network connectivity, commonly in the form of servers or virtual-

ized servers. Using these IT resources, customers may host their own

operating systems and applications.

Platform as a Service (PaaS): The provider offers a runtime envi-

ronment for applications. Servers, storage, network connectivity,

and other resources are hidden from the customer, who creates a

provider-compatible application. Providers can support custom or

well-established programming languages and offer libraries to access

environment functionality.

Software as a Service (SaaS): The provider offers a complete application.

The cloud infrastructure that is employed is hidden from the customer.

Customers access this application via user interfaces and can only

configure the application itself.

58



3.1 Architectural Principles of Cloud Computing

Finally, the cloud provider has to maintain IT resources constituting

the cloud environment. This is done according to four cloud deployment
models:

Private cloud: One organization can access the cloud environment. The

cloud may be hosted on or off the premises of the organization.

Community cloud: A group of organizations can access the cloud en-

vironment. Often, this group wishes to cooperate or shares common

requirements regarding security, compliance, and other considerations.

The cloud may be hosted on the premises of a member of this group or

by a third party.

Public cloud: The general public can access the cloud environment. The

cloud is hosted by the cloud provider.

Hybrid cloud: The cloud environment is composed of a combination

of clouds and data centers following an arbitrary deployment type.

This combination requires a level of integration functionality that is

commonly managed by the customer.

3.1.2 Impact of Cloud Computing Properties onApplications
The NIST characterizes the cloud environment, but does not address

the properties of the applications using this environment. The envi-

ronment characteristics presented by NIST originate from the enabling

concepts or technologies: virtualization, elasticity, and utility comput-

ing [Ley09]:

Virtualization: Multiple IT resources on which a cloud environment

is hosted are summarized to one abstract resource to enable the NIST

59



3 Identification of Patterns for Cloud Computing

property of resource pooling among customers. For example, multiple

physical servers are summarized to provide a hosting environment

for virtual servers. The concept of hardware virtualization and its

implementation in hypervisors has been well established for several

decades [Gol73; Gol72; Gol71].

Elasticity: The size or number of IT resources used by a customer can

grow or shrink as the demand of that customer changes. This concept

corresponds to the NIST property of rapid elasticity.

Utility Computing: The use of IT resources is similar to the use of

electricity, gas, or water (utilities). Therefore, the customer can use

resources on-demand and pays only for the consumed amount. This

concept is visible in the NIST properties of on-demand self-service and
measured service.

To evaluate the impact of cloud properties from the NIST definition, the

NIST properties relevant to the abovementioned enabling concepts and

technologies have been considered to determine the requirements of the

cloud application. The NIST property of broad network access has been
omitted, as it is an enabling property of the connection network and,

thus, does not describe a property of the cloud environment itself. The

requirements deduced from the remaining NIST properties for cloud

applications are as follows:

On-Demand Self-Service: The cloud provider enables the customer to

provision and configure IT resources at all times and, especially, via

application programming interfaces (API).

Requirement 1 (R-1): Cloud Interface Integration: A cloud application

should integrate provider-supplied self-service interfaces to enable

dynamic and automatic reconfiguration if environmental conditions

change; for example, dynamic workload or resource prices.

60



3.1 Architectural Principles of Cloud Computing

Resource Pooling: Shared IT resources are dynamically assigned to cus-

tomers. This implies that a cloud provider manages a large number of

IT resources. Resource assignments are made with respect to the gran-

ularity of this pool; for example, virtual servers or amount of storage

in gigabytes (GB).

Requirement 2 (R-2): Redundant Resource Use: A cloud application should

rely on multiple IT resources, as the granularity offered by a provider

may not meet the application’s demand.

Rapid Elasticity: The cloud provider enables the customer to provision

and decommission IT resources flexibly. This implies that the number of

resources on which an application relies can be adjusted on demand.

Requirement 3 (R-3): Resource Number Adjustment: A cloud application

should be able to flexibly change the number of resources upon which it

relies to enable their addition and removal as the workload changes.

Measured Service: The cloud provider offers monitoring information

based on which the use of the IT resources is billed. Often, this is used

to enable a pay-per-use pricing model.

Requirement 4 (R-4): Cost Management: A cloud application should be

aware of the running costs and the workload encountered in order to

adjust the number of IT resources automatically.

These requirements are identical regardless of the NIST cloud service
model or cloud deployment model that the cloud provider offers. These

aspects of the NIST definition of cloud computing are, therefore, not

considered to deduce the architectural properties of cloud applications.

They have, however, been used to structure the domain of cloud com-

puting for pattern identification.

61



3 Identification of Patterns for Cloud Computing

In addition to these cloud properties, cloud computing introduced new

concepts of data consistency, which has a major impact on cloud applica-

tions. Traditionally, storage offerings could be accessed in transactions

comprised of multiple data manipulations that guarantee ACID behav-

ior [BN09; GR93]: atomicity – operations of a transaction succeed as a

whole or fail as a whole; consistency – the state of the database is valid

before and after the transaction; isolation – concurrent transactions

do not interfere with each other; and durability – after completion of

a transaction, the resulting state of the database is permanent. ACID

behavior of data storage may simplify the implementation of appli-

cation functionality, as fewer situations regarding the propagation of

data changes have to be considered. However, more coordination is

required if data is spread out among multiple cloud resources, to assure

a consistent state. Distribution may cause performance reduction in

extremely large storage offerings that are globally distributed, which

is often the case for cloud computing. That is why, according to the

CAP theorem [GL02], only two out of the three properties of a storage

offering can be maximized: consistency, availability, or performance.

This leads to the BASE behavior [Pri08; Bre12; Vog09] of many cloud

offerings, which are basically available, soft state, and eventually con-

sistent. Therefore, availability is preferred over a precisely-known state

at all times, and data consistency is only assured over time.

Requirement 5 (R-5): Data Consistency: A cloud application has to con-

sider the physical locations where data is handled and the respective

consistency behavior.

62



3.1 Architectural Principles of Cloud Computing
Table 3.1 –Mapping of cloud environment requirements to cloud applica-tion properties

Iso
lat

ed
 St

at
e

Di
str

ib
ut

io
n

Ela
sti

cit
y

Au
to

m
at

ed
 M

an
ag

em
en

t

Lo
os

e C
ou

pl
in

g

R‐1: Cloud Interface Integration  ✓

R‐2: Redundant Resource Use ✓ ✓

R‐3: Resource Number Adjustment ✓ ✓

R‐4: Cost Management ✓

R‐5: Data Consistency ✓

3.1.3 IDEAL Properties of Cloud Applications
Based on the requirements originating from the properties of clouds, the

following properties of cloud applications have been deduced [FLR+14].

An overview of these properties and the requirements they address is

shown in Table 3.1.

Isolated State: This property addresses R-5: “Data Consistency”: The

ACID and BASE consistency behavior of data storage is reflected by

the cloud application architecture. For every data element handled by

the application, the consistency behavior acceptable by the use case

of the application is considered. Furthermore, the cloud application

manages session state — the state of interaction with users and other

applications – and application state — the data elements handled by

the application – only in a limited number of application components.

Ideally, state information is provided to application components with

63



3 Identification of Patterns for Cloud Computing

each request or is kept in provider-supplied storage offerings, because

the management of state information can significantly hinder scaling

application components and handling component failures.

Distribution: This property addresses R-2: “Redundant Resource Use”:

Cloud resources are pooled among customers. The cloud application’s

functionality is, therefore, decomposed to obtain multiple application

components. These components can rely on multiple IT resources to

support the distributed nature of the cloud environment.

Elasticity: This cloud application property addresses R-3: “Resource

Number Adjustment”: Cloud resources can be added and removed flexi-

bly. The cloud application, therefore, has to support IT resources being

provisioned and decommissioned quickly to meet different workload

demands. In combination with the distribution property, this means

that a cloud application is scaled out instead of scaled up: resource
numbers are increased rather than increasing the capabilities of indi-

vidual resources. For a detailed comparison of both scaling approaches,

refer to [FLR+14]. The required continuous addition and removal of

resources from the application is highly dependent on the property

of isolation of state: if IT resources handle the state, this state has to

be synchronized or extracted upon provisioning or decommissioning,

respectively. Elasticity is, therefore, more complex to realize with more

application components handling the state information

Automated Management: This cloud application property addresses R-1:

“Cloud Interface Integration”: Providers’ self-service interfaces are ac-

cessed on demand. Cloud applications, therefore, should independently

handle runtime management, such as elastic scaling or failure resiliency.

Human decisions and interaction are often too time-consuming to re-

spect the flexibility of a cloud environment. In particular, if the provider

offers a pay-per-use pricing model, scaling decisions should be made as

64



3.1 Architectural Principles of Cloud Computing

quickly as possible. The measurement of resource use described by R-4:

“Cost Management”, thus, also impacts this cloud application property.

Service level agreements of cloud providers often provide no assurances

for the availability of individual resources — only for the possibility to

initiate replacements. Under such conditions, fault tolerance has to be

automated.

Loose Coupling: This cloud application property is an enabling factor

to fulfill R-2: “Redundant Resource Use” and R-3: “Resource Number

Adjustment”. As cloud resources and, thus, the application components

are distributed, communication errors may occur due to numerous

reasons, such as network outages, failure of communication partners,

or resource number adjustments. The speed at which communication

partners exchange information may also introduce complexity, if one

communication partner cannot process information as quickly as oth-

ers. Regarding rapid elasticity of the environment, the provisioning

and decommissioning of resources becomes more complex the more

these actions affect other resources and application components. For

example, this could be an issue if application components have to be

notified that another component instance with which they interact

is being removed or has been added. Therefore, a cloud application

should enable the following autonomies of loose coupling among the

application components of which it is composed:

(i) Platform autonomy: Application components may be implemented

in different programming languages and run on different middle-

ware.

(ii) Reference autonomy: Interacting application components are un-

aware of their addresses.

(iii) Time autonomy: Application components may exchange informa-

tion at different speeds and at different times.

65



3 Identification of Patterns for Cloud Computing

(iv) Format autonomy: Application components may use different data

formats to exchange information and, especially, do not necessarily

have to know the formats supported by their communication

partners.

These five cloud application properties constitute the architectural

baseline of cloud applications. They provide a first orientation when

designing a cloud application and have been used to structure the

cloud computing domain within the information collection phase of the

pattern engineering process: information sources from which patterns

were abstracted have been reviewed for provider-specific guidance

regarding how to enable the IDEAL cloud application properties in

order to identify patterns.

3.2 Cloud Application Properties in OtherArchitectural Styles
Cloud computing has evolved from well-established concepts and tech-

nologies [Ley09]. Therefore, the architectural principles of cloud ap-

plications should also be visible in other existing architectural styles,

while still providing a unique combination of such principles. Here,

the properties of distributed systems in general [TS06; CDK05; Neu94],

messaging applications [HW03], the REST architectural style [Fie00;

FT02], and service-oriented architectures (SOA) [KBS05] have been

evaluated. It is shown that many of the cloud application properties

can be found at least partially in these established architectural styles.

Applications following these architectural styles are, therefore, good

candidates for migration to the cloud [FLR+13]. The differences are,

however, still significant enough to justify the definition of architectural

properties specific to cloud computing.

66



3.2 Cloud Application Properties in Other Architectural Styles

3.2.1 Distributed Systems
As cloud environments are comprised of multiple resources, they are dis-

tributed systems. Table 3.2 maps the properties and goals of distributed

systems covered in this section to the IDEAL architectural principles of

cloud applications. Most of the distributed system properties are also

visible in the IDEAL principles. The grey markings indicate where a

distributed system property is only considered partially or not at all.

These properties have been considered during pattern identification to

identify patterns handling these aspects of a distributed system in cloud

applications. Tanenbaum and Steen [TS06] define such distributed

systems as follows:

“A distributed system is a collection of independent com-
puters that appears to its users as a single coherent system.”

Similarly, a cloud application is composed of different components

(distribution property), yet should hide this fact from its users. Coulouris,

Dollimore, and Kindberg [CDK05] describe the following properties as

consequences of the structure of distributed systems:

Concurrency: The entities comprising the distributed system operate

independently and in parallel. For example, multiple servers perform

tasks independently and simultaneously while exchanging information

via a network. Adding more of these entities can, therefore, increase the

capacity of the system. This property matches the distribution property
and elasticity property of cloud applications: the components of a cloud

application also operate in parallel, and resources are added for reasons

of elasticity.

No Global Clock: The entities of distributed systems coordinate their

actions by exchanging messages rather than sharing a common notion

67



3 Identification of Patterns for Cloud Computing
Table 3.2 –Mapping of distributed system properties (left) to cloud applica-tion properties (top) (in gray: unmapped properties that wereespecially considered during pattern identification)

Iso
lat

ed
 St

at
e

Di
st

rib
ut

io
n

Ela
sti

cit
y

Au
to

m
at

ed
 M

an
ag

em
en

t

Lo
os

e C
ou

pl
in

g

Concurreny (Parallel Processing) ✓ ✓

No Global Clock (Coordination via Messages) ✓

Independent Failures ✓

Connecting Users and Resources
Access Transparency ✓

Location Transparency ✓

Migration Transparency (✓)
Relocation Transparency (✓)
Replication Transparency ✓

Concurrency Transparency (User Accesses)
Failure Transparency ✓

Persistency Transparency ✓

Openness
Scalability ✓ ✓

of time to determine when interactions should occur. This property is

similar to loose coupling of cloud applications: messaging reduces the

dependencies among components to make the communication more

reliable.

Independent Failures: Entities of the distributed system may fail indi-

vidually and the network connectivity may be unavailable. The system

68



3.2 Cloud Application Properties in Other Architectural Styles

designer has to respect and handle such failures. This property matches

automated management of cloud applications: if resources fail, the cloud
application should react automatically to enable resiliency.

Tanenbaum and Steen [TS06] furthermore introduce the following

goals that should be achieved in a distributed system. As every cloud

application is also distributed, these goals may also be relevant within

this scope:

Connecting Users and Resources: Users should be enabled to access re-

mote resources to enable sharing these resources. This is also a goal of

cloud computing, which becomes apparent in the resource pooling prop-
erty of clouds as defined by NIST [MG11]. The service models of cloud

computing (see Section 3.1.1) also reflect this property of distributed

systems. The style of user access does not impact the architectural prin-

ciples of the cloud application itself. However, during pattern research,

how these user accesses are handled should be investigated.

Transparency: The distributed system should hide the fact that it relies

on multiple distributed resources that operate independently. This goal

is visible in the distribution property of cloud applications: the cloud

application comprises multiple components and provides one homo-

geneous user experience. Furthermore, Tanenbaum and Steen [TS06]

describe eight aspects of transparency that should either be visible in

the architectural principles of cloud applications or would form a valid

aspect to be investigated during pattern research:

(i) Access transparency: Different data representations of resources
and the way they are accessed are hidden.

(ii) Location transparency: The physical and logical location of re-

sources is hidden.

(iii) Migration transparency: Resources can be moved without impact-

ing interacting resources or users of the system.

69



3 Identification of Patterns for Cloud Computing

(iv) Relocation transparency: Similar to migration, but resources can

be moved while in use.

(v) Replication transparency: It is hidden that multiple instances of

the resource exist.

(vi) Concurrency transparency: Different users may access the same

resources without noticing that resources are shared.

(vii) Failure transparency: If a resource fails and has to be recovered,

other resources and users are not impacted.

(viii) Persistence transparency: The type and location of storage used

by a resource is hidden.

The loose coupling property of cloud applications summarizes access,

location, and failure transparency. Migration transparency and reloca-

tion transparency are also related to the loose coupling property, as they
consider the impact of resource moves. As these goals are more specific

than the definition of the cloud application property, they have been in-

vestigated specifically during pattern research. Replication transparency
is respected by the elasticity cloud application property: Tanenbaum

and Steen [TS06] define concurrency transparency differently from

the concurrency property introduced by Coulouris, Dollimore, and

Kindberg [CDK05]. Rather than considering processing handled by

resources, they focus on the access concurrency of application users.

This goal is also not made explicit in the cloud application properties,

because a cloud application does not necessarily have to be accessed by

multiple users. Nevertheless, it should be investigated during pattern

research. Persistence transparency is visible in the isolation of state
cloud application property, which already states that the location where

data is handled should be considered in a cloud application. Hiding the

specifics of this storage, for example, the consistency behavior of data

is a new aspect that was investigated during pattern research.

70



3.2 Cloud Application Properties in Other Architectural Styles

Openness: The distributed system should offer services according to

standardized rules, with clear semantics and via well-defined interfaces.

This enables accessibility, interoperability, and portability of distributed

systems. The service models of cloud computing describe the semantics

of services offered by a cloud provider. However, few standardized

interfaces exist for cloud offerings. For example, standardization efforts

have been undertaken by OASIS
6
, IEEE

7,8
, and DMTF

9
. A cloud appli-

cation often has to handle challenges related to interoperability and

portability. These aspects of the openness goal should, therefore, be

considered during pattern research.

Scalability: The distributed system should be scalable with respect to

three different dimensions according to Neuman [Neu94]:

(i) Size: More resources can be added to the system in order to in-

crease its capabilities.

(ii) Geographic: Users and resources may be distributed globally. Thus,

large physical distances between users and resources may exist,

as well as significant distances between different resources.

(iii) Administration: With a growing size, the system remains manage-

able. Especially, the system is able to span different independent

administrative organizations.

Scalability with respect to the system size is covered by the elasticity
property of cloud applications. Elasticity only places a stronger focus

on the decrease of resource numbers and the time that adjustments

take (see [FLR+14] for a detailed discussion). The other three aspects

6http://docs.oasis-open.org/tosca/TOSCA/v1.0/os/TOSCA-v1.0-os.html
7http://standards.ieee.org/develop/wg/CPWG-2301_WG.html
8http://standards.ieee.org/develop/wg/ICWG-2302_WG.html
9http://dmtf.org/sites/default/files/standards/documents/DSP0263_1.0.1.

pdf

71

http://docs.oasis-open.org/tosca/TOSCA/v1.0/os/TOSCA-v1.0-os.html
http://standards.ieee.org/develop/wg/CPWG-2301_WG.html
http://standards.ieee.org/develop/wg/ICWG-2302_WG.html
http://dmtf.org/sites/default/files/standards/documents/DSP0263_1.0.1.pdf
http://dmtf.org/sites/default/files/standards/documents/DSP0263_1.0.1.pdf


3 Identification of Patterns for Cloud Computing
Table 3.3 –Mapping of messaging properties (left) to cloud applicationproperties (top) (in gray: unmapped properties that were espe-cially considered during pattern identification)

Iso
lat

ed
 St

at
e

Di
st

rib
ut

io
n

Ela
sti

cit
y

Au
to

m
at

ed
 M

an
ag

em
en

t

Lo
os

e C
ou

pl
in

g

Asynchrony ✓ ✓

Message Transformation ✓

Message Routing ✓

Frequent Collaboration
Pipes and Filters Architecture ✓

Messaging Endpoints

are not covered by the cloud application properties. Therefore, these

three distributed system properties constitute a valuable consideration

for pattern research.

3.2.2 Messaging
The properties of a distributed system according to Coulouris, Dol-

limore, and Kindberg [CDK05] already consider the exchange of mes-

sages to coordinate the work of entities comprising the distributed

system. Hohpe and Woolf [HW03] cover patterns for such messaging

systems in detail and apply them in the domain of enterprise application

integration (EAI). In this domain, many existing applications supporting

the business of a company need to work together by sharing data and

72



3.2 Cloud Application Properties in Other Architectural Styles

accessing the functionality of each other. Table 3.3 summarizes the

overlap of messaging properties and cloud architecture principles. Ac-

cording to their messaging pattern and the covered messaging systems,

the message-based integration style is successful due to the following

properties:

Asynchrony: Communication partners do not have to be available at the

same time, and delays introduced by working with a remote application

are acceptable. The application components developed according to

this approach, therefore, display high cohesion — they handle a high

volume of local processing – and low adhesion — remote processing is

made selectively.

Message Transformation: Integrated applications can use different inter-

nal data formats and produce differently-formatted messages. Messages

are transformed during transit without affecting senders and receivers

of messages.

Message Routing: The messaging system integrating multiple applica-

tions decides how to route and deliver messages. These messages can

be prioritized differently, delivered to one or multiple receivers, etc.

Frequent Collaboration: Messages can be exchanged often, which allows

applications to collaborate directly and immediately. In comparison

with other integration styles covered by Hohpe and Woolf [HW03],

such as transferring files between integrated applications, messaging

enables a timely exchange of information among applications.

Pipes and Filters Architecture: This architectural style is used to realize

message-processing components communicating through the channels.

This enables the messaging system to operate on messages; for example,

to handle format transformations outside the scope of the integrated

applications.

73



3 Identification of Patterns for Cloud Computing

Messaging Endpoints: Most applications do not support messaging sys-

tems natively. Messaging endpoints bridge the gap between the mes-

saging system and the application and may, especially, hide the fact

that messaging is used from integrated applications.

These properties of messaging applications are visible in many of the

cloud architectural principles. Asynchronous exchange of messages

nicely defines where the state information is handled: in the messages.

While no behavior is specified regarding the storage of data inside the

integrated applications, messaging helps to realize the isolation of state
cloud application property. Asynchrony, message transformation, and

message routing enable the aspects of autonomy demanded by the loose
coupling property. The pipes and filters architectural style leads to

application components fulfilling the distribution property. Frequent

collaboration and messaging endpoints that hide the idiosyncrasies

of messaging are not specifically respected in the cloud architectural

principles, as these properties of messaging are not necessarily required

to derive benefit from a cloud environment. Nevertheless, the overlap

of properties makes messaging applications suitable for a cloud environ-

ment. Therefore, the messaging patterns of Hohpe and Woolf [HW03]

have been reviewed for their applicability in a cloud environment, and

the properties of messaging applications have been used to structure

the identification of cloud computing patterns, which are presented in

Section 4.4.

3.2.3 Representational State Transfer (REST)
REST is the architectural style of the World Wide Web. The REST ar-

chitectural style is centered around resources managed on distributed

74



3.2 Cloud Application Properties in Other Architectural Styles
Table 3.4 –Mapping of REST constraints (left) to cloud application proper-ties (top) (in gray: unmapped properties that were especiallyconsidered during pattern identification)

Iso
lat

ed
 St

at
e

Di
str

ib
ut

io
n

Ela
sti

cit
y

Au
to

m
at

ed
 M

an
ag

em
en

t

Lo
os

e C
ou

pl
in

g

Layered Client Server ✓ ✓

Cache ✓

Stateless Server ✓

Uniform Interface
Identification
Manipulation through Represenation
Self‐Descriptive Messages ✓

Hypertext as the Engine of Application State

servers. A resource in this scope can be a data element or some function-

ality. Fielding and Taylor [Fie00; FT02] define more than 10 different

constraints that REST applications have to fulfill. These constraints

form a complex graph with dependencies and refinements. For a com-

parison with the cloud application properties, the summary of the REST

properties presented by Haupt et al. [HKLS14] is used. Table 3.4 shows

these dependencies among REST constraints and the cloud application

properties. The summarized properties of REST applications are:

Layered Client Server: A separation is introduced between clients access-

ing the application and servers hosting the application’s functionality

and data. Functionality should be divided into layers such that one layer

provides functionality to the layer above it and uses functionality of

75



3 Identification of Patterns for Cloud Computing

the layer below. The result is that the dependencies among application

functionalities are easier to manage.

Cache: Response data, i.e., the result returned by a function hosted on

a server, is declared as “cacheable” or “non-cacheable”. If a result is

cacheable, the client, server, or an intermediary along the communica-

tion path may store the result and use this information to answer any

future requests to the same function directly and, thus, more quickly.

Stateless Server: The interaction of the client with the server does not

use a session state, i.e., one request to the server is independent of any

prior requests to that server or the information contained therein.

Uniform Interface: All interaction between the client and the server is

based on a well-defined and fixed set of methods. In the case of HTTP,

the interaction protocol of the World Wide Web, these methods are

PUT, GET, POST, and DELETE [FGM+99]. PUT creates new resources

on the server. GET retrieves resources. POST passes information to a

resource that processes it. DELETE removes a resource.

Identification: resources are precisely addressable in order to be found

in the distributed environment in which the REST application is hosted.

In the case of the World Wide Web, this addressing is enabled by unique

resource identifiers (URI).

Manipulation Through Representations: Each resource can have different

representations to support different clients. In the scope of the World

Wide Web, this means that resources handled by servers can be visual-

ized differently for mobile phones than they are visualized for desktop

browsers.

Self-Descriptive Messages: all information to understand and process a

request is provided with that request. This is achieved through separa-

76



3.2 Cloud Application Properties in Other Architectural Styles

tion between the data contained in a request and metadata describing

the semantics of the request.

Hypertext as the Engine of Application State (HATEOAS): the resources
accessed by a client directly control the next possible actions of that

client. Websites of the World Wide Web enable this property by con-

taining links to other sites. Therefore, if a client accesses a website

resource, links to related resources are provided that can be used by the

client application to navigate to related websites.

With respect to the cloud application properties, the layered client

server constraint introduces some decomposition, similar to that of

the distribution cloud application property. The management of depen-

dencies among application components by introducing layers enables

some of the autonomies demanded from the loose coupling property.

The cache REST property is related to the isolation of state, because it
considers where data is stored and replicated to increase performance.

Caching has also been investigated during the search of cloud comput-

ing patterns. The same is true for the stateless server and self-descriptive
messages REST properties – both consider where state is handled in

the application. As they are more specific than the properties of cloud

applications, these aspects have also been investigated during pattern

research. The REST properties regarding uniform interfaces, the identifi-
cation of resources, manipulation through representations, and hypertext
as the engine of application state are not explicitly visible in cloud ap-

plication properties. Again, as these concepts make REST applications

reliable and scalable, it has been investigated whether they are also

found in existing cloud applications during the pattern research pre-

sented in this work.

77



3 Identification of Patterns for Cloud Computing

Table 3.5 – Mapping of SOA concepts (left) to cloud application proper-
ties (top) (in gray: unmapped properties that were especially
considered during pattern identification)

Iso
lat

ed
 St

at
e

Di
str

ib
u

on
Ela

s
cit

y
Au

to
m

at
ed

 M
an

ag
em

en
t

Lo
os

e C
ou

pl
in

g

Applica on Frontends
Services
Service Repository
Service Bus

3.2.4 Service-Oriented Architectures

Service-oriented computing (SOC) and the resulting service-oriented

architectures (SOA) of applications decompose application functionality

into individual services accessed via well-defined interfaces. This seems

similar to the decomposition and distribution of cloud applications.

According to Krafzig, Banke, and Slama [KBS05], a SOA is comprised of

the following entities. Table 3.5 summarizes the relationships between

these SOA concepts and cloud application properties.

Application Frontends: These interfaces for the human user orchestrate

multiple services to provide a homogeneous user experience.

Services: Functionality provided by one organizational unit of a com-

pany is offered to other companies or departments [WCL+05; Zim09].

Such a service is constituted by its implementation, interface descrip-

tions, and a service contract. The implementation realizes the provided

78



3.2 Cloud Application Properties in Other Architectural Styles

functionality. A service may have multiple interface specifications de-

scribing multiple means to access the service. The service contract

describes the function of the service and its behavior – the agreement

between service provider and consumer.

Service Repository: Services are described in a repository to be discov-

ered by potential consumers. Discovery may be based on the service

contract or other properties of the service, such as location or usage

fees.

Service Bus: An (enterprise) service bus establishes the connectivity

between service provider and consumer. By interaction through an

intermediary, the assumptions that the service provider and consumer

have to make about each other, such as location, availability, or data for-

mat, are reduced. These idiosyncrasies of communication are handled

in the service bus. Having a service bus as an intermediary communica-

tion partner is therefore motivated by the same separation of concerns

ensured by using a messaging system.

Information processed by the service functionality is often provided

with each request. This concept is also part of the isolation of state cloud
application property: state is held in a minimum number of components

and is provided with requests, if possible. The concept of services also

demands that the application functionality is decomposed as described

by the distribution cloud application property. Individual services can

easily be distributed among multiple cloud resources. As services have

an always-on semantic, their implementation often includes some auto-
mated management to handle failures and changes in access numbers.

This cloud application property is, however, not directly visible in the

properties of a SOA. The service bus enables the cloud application prop-

erties of elasticity and automated management: if services are added,
the service repository can serve as a coordinator for the number of

79



3 Identification of Patterns for Cloud Computing

Cloud
Environment

Cloud Application

...
...

User Group
Load

Balancer

Presentation Message
Queue

Business Logic Data
Management

Processing Communication Storage

1 2 3

hosted onhosted onhosted on

Figure 3.2 – Reference cloud application [FLR+14]

currently active service instances. The service bus also enables the

same loose coupling property that is desired in cloud applications or

message-based applications: the service bus serves as a communica-

tion intermediary that hides the concrete location of communication

partners, their internal data format etc. As the notion of application

frontends is not specifically mentioned in the cloud application proper-

ties, this concept has accordingly been especially considered for pattern

research.

3.3 Reference Cloud Application
To structure and organize the search for cloud computing patterns, a

reference cloud application has been used. This reference application is

comprised of abstract application components, runtime offerings, and

cloud environments. It is depicted in Figure 3.2. The separation between

cloud runtime environment and cloud application has been made to dif-

ferentiate between two categories of patterns early on: the application

developer implements patterns related to the cloud application. These

80



3.3 Reference Cloud Application

patterns, thus, describe how they are realized in the scope of the cloud

application and when they should be used. Patterns associated with

the cloud runtime environment are not implemented, but are instead

offered by the cloud provider. These patterns describe different types of

environments and the offerings available in them. Therefore, they do

not cover how the environment and the offerings are implemented – the

cloud provider handles this. Instead, these patterns describe how the

environment and offerings behave, how they are used in cloud applica-

tions, and under which conditions certain environments and offerings

should be used in applications. This differentiation respects that cloud

applications are almost never completely implemented by the applica-

tion developer, but rely heavily on cloud-provided offerings.

The user group is accessing the reference application. Patterns associ-

ated with the user group cover different types of user behavior such

as access frequency and how the cloud application can handle such

varying behavior. Even though not all cloud computing patterns are

implemented by the developer and capture other aspects regarding

the user group and the cloud runtime environment, they ensure easier

accessibility of the pattern language: through interrelations between

patterns, cloud application patterns can be connected to different user

behavior and cloud offerings. The entities comprising the cloud applica-

tion and the cloud runtime environment are described in the following

sections.

3.3.1 Cloud Runtime Environment
This part of the cloud reference application contains the cloud offerings

on which the cloud application is hosted. Three different types of

offerings are differentiated:

81



3 Identification of Patterns for Cloud Computing

Processing: Offerings of this type allow the execution of application

functionality to handle user requests and other tasks. These offerings

either host application components or provide functionality that can

be integrated with application functionality.

Communication: Offerings of this type can be used to exchange infor-

mation among application components and with other applications.

Due to the high overlap among cloud architectural principles and prop-

erties of message-based applications (see Section 3.2.2), offerings for

asynchronous communication have been especially considered.

Storage: Offerings of this type can be used to handle data. Cloud

providers commonly suggest managing data in provider-supplied of-

ferings. Some providers even demand this separation of concerns to

simplify the hosting of application components, as application compo-

nents of customers can be scaled more easily and replaced in case of

failures if these components do not handle data.

3.3.2 Cloud Application
This part of the cloud reference application is comprised of the ap-

plication components that are created by the application developer.

One exception is the load balancer through which users access the

application:

Load Balancer: This component is often part of the cloud offering or en-

abled by well-established technology, such as the domain name system

(DNS). Customers, however, need to configure this functionality to the

requirements of their applications.

82



3.3 Reference Cloud Application

Presentation: This component provides the user interface through which

humans can access the functionality of the application. Multiple in-

stances of this component may be used to scale out the application. The

presentation component is hosted on processing offerings of the cloud

provider.

Message Queue: As asynchronous communication is beneficial to the

cloud application properties, messaging is part of the cloud reference

application. While the interaction between human users and the presen-

tation component is synchronous, the communication between other

application components is asynchronous, as enabled by message queues.

The message queue is hosted on communication offerings of the cloud

provider.

Business Logic component: This component realizes the functionality

supporting the business case of the application. This functionality is

generally more complex and possibly longer running than functionality

provided by the presentation component. Again, the business logic

component is scaled out. The business logic component is hosted on

processing offerings of the provider.

Data: This component represents the data handled by the application

and its structure. This structure and the contained data elements are

specific to the application’s business case. The data is hosted by the

storage offerings of the provider.

Operation Management: This component provides functionality that is

not directly required to realize the functionality offered to application

users. Instead, it implements management functionality that ensures

the proper operation of the application in an automated fashion. Such

management functionality, for example, includes elastic scaling of the

application or handling of failures. Commonly, the cloud provider

83



3 Identification of Patterns for Cloud Computing

Physical Hardware

Operating Systems

Middleware

Application Software

Virtual Hardware

Business Processes

Figure 3.3 – Application stack (adapted from [FLR+14])

supplies some offerings that can be used to configure operations man-

agement.

3.3.3 Application Stack

The hardware and software stack depicted in Figure 3.3 has been defined,

to further characterize cloud offerings and application components in

order to guide pattern identification. It is comprised of the following

layers.

Physical Hardware: Tangible and physical IT resources comprise this

layer. Common examples are servers, networking infrastructure, power

lines, etc.

Virtual Hardware: Physical IT resources can be abstracted to virtual

ones with similar properties. For example, a physical server can host

84



3.4 Architectural Topics for Cloud Applications

multiple virtual servers. Virtualization is commonly used to share the

underlying physical hardware among multiple virtual instances and

increase the flexibility of hardware configurations.

Operating Systems: This software is installed directly on the physical or

virtual hardware to provide functionality to higher layers, i.e., to access

networking cards, hard drives, etc.

Middleware: Similar to an operating system that manages an applica-

tion’s access to physical or virtual hardware, this software provides

higher-level functions to be used by custom applications. Such func-

tionality may subsume, for example, the exchange of messages or the

storage of data.

Application Software: Software on this layer offers business-centric

functionality, such as customer relationship management (CRM) or

document processing.

Business Processes: The application software supports the actual busi-

ness activities of a company. These may, for example, include credit

approvals, billing, order processing, etc.

3.4 Architectural Topics for Cloud Applications
Up to this point, this chapter has introduced architectural principles of

cloud applications, similar established architectural styles, and a refer-

ence cloud application with a related application stack to structure the

cloud computing domain. All of these aspects have been investigated

in existing applications, provider documentation, and other sources to

identify patterns. Furthermore, a collection of topics that are affected

by cloud computing has been distilled from interviews with industry

85



3 Identification of Patterns for Cloud Computing

partners. The cloud properties and cloud application properties influ-

ence how these topics are addressed in cloud applications. Therefore,

information sources and existing applications were reviewed to identify

how they address these topics. As the list of topics has been created

based on interviews with industry partners, it represents the view of

these companies and is not necessarily complete. Topics are covered in

alphabetical order.

3.4.1 Accounting and Controlling
The metered service NIST cloud property often manifests as pay-per-

use pricing models (see Section 3.1.1). Some providers may offer lower

prices for long-term provisioning, such as Amazon Reserved Instances
10
.

Variable resources prices may also be used by cloud providers. If the

utilization of the cloud itself decreases, prices are reduced accordingly.

During periods of high utilization, customers have to pay more for

used resources. This is, for example, the pricing model of Amazon Spot

Instance
11
.

Therefore, the automated management of cloud applications should re-

spect different pricing models. Active workload management to handle

processing during times of low resource prices is also beneficial. The

various payment models used by cloud providers also challenge compa-

nies to support these models in their accounting systems, keep track

of running expenses at different cloud providers, and select the most

economical cloud provider for their applications. The comparability

of providers using different pricing models is especially challenging:

10http://aws.amazon.com/ec2/purchasing-options/reserved-instances/
11http://aws.amazon.com/ec2/purchasing-options/spot-instances/

86

http://aws.amazon.com/ec2/purchasing-options/reserved-instances/
http://aws.amazon.com/ec2/purchasing-options/spot-instances/


3.4 Architectural Topics for Cloud Applications

providers may charge for different usage aspects, such as data trans-

fer or active time of virtual servers, making an effective comparison

difficult.

3.4.2 Application Migration
Recalling that a large overlap in architectural principles of established

architectural styles has been identified in Section 3.2, existing appli-

cations are likely to exist that are suitable for a cloud environment

without significant adaptation. In particular, those applications that

provide information to public users are promising candidates as (i) the

handled data is public, and thus, less legal regulations and corporate

regulations have to be respected and (ii) the workload behavior of a

public user group likely changes more frequently and to a higher degree;

thus, these applications may benefit from the elasticity of clouds.

Therefore, means should be investigated to migrate applications to a

cloud environment in a coordinated fashion. This is especially impor-

tant because the environment found in clouds may differ significantly

from the company-internal environment. The cloud provider controls

more functionality, and some functionality may even be unavailable

from a cloud provider. Therefore, the application’s infrastructure re-

quirements and how it integrates with cloud offerings has to be consid-

ered.

Some migration patterns have been described as an extension of the

cloud computing patterns in [FLR+13]. The migration of existing appli-

cations is also considered by Andrikopoulos et al. [ASL13; ADKL14]

providing a decision support framework for this task. Strauch et

al. [SAB+13a], especially, consider the migration of data to a cloud

87



3 Identification of Patterns for Cloud Computing

environment. Binz, Leymann, and Schumm [BLS11] propose a frame-

work for the migration of applications based on application models.

Optimization of the deployment of migrated applications is presented

in [LFM+11].

3.4.3 Cloud Integration
It is likely that many companies will use multiple cloud environments

and other data centers in parallel, as some applications may not be

suitable for a cloud environment due to various reasons, such as legal

or security aspects. Some legacy applications may reside in existing

data centers, and moving them to a cloud environment would be too

complex or uneconomical.

Therefore, means should be investigated to integrate different cloud en-

vironments with a company’s data centers. The integration complexity

should not be handled by every use case individually.

Existing cloud provider functionalities, such as Amazon Virtual Private

Cloud (VPC)
12
, WSO2 Enterprise Service Bus

13
, or Microsoft Azure

Connect
14
, mostly focus on the integration of a customer data center

with a cloud and neglect the integration between multiple cloud envi-

ronments. Cloud computing patterns for the integration of multiple

clouds and data centers have been presented in Fehling et al. [FLR+14]

and are summarized in Section 4.4.

12http://aws.amazon.com/vpc/
13http://wso2.com/products/enterprise-service-bus/
14http://www.windowsazure.com/en-us/home/tour/virtual-network/

88

http://aws.amazon.com/vpc/
http://wso2.com/products/enterprise-service-bus/
http://www.windowsazure.com/en-us/home/tour/virtual-network/


3.4 Architectural Topics for Cloud Applications

3.4.4 Compliance to Laws and Regulations
Companies are required to respect numerous laws and corporate reg-

ulations in their IT infrastructure setup, runtime management, and

applications. Regulations often target the storage location and accessi-

bility of data as described, for example, by the Federal Data Protection

Act in Germany [Ger90]. Also, regulations often involve audits per-

formed by external third parties. In a virtualized environment, these

compliance requirements can be difficult to fulfill: cloud providers may

obfuscate the exact location of data, and examining the physical hard-

ware can be impossible for human auditors. Another challenge that

companies face can be the unauthorized use of external cloud resources.

As public cloud offerings may be more flexible than company internal

services, departments or individual employees may be driven towards

using cloud services, such as Dropbox
15
.

Therefore, new means have to be investigated regarding how cloud

applications can fulfill existing and possibly arising compliance require-

ments. This especially affects the management processes for audits.

Unauthorized use of cloud offerings in companies also has to be ad-

dressed, as well as strategies concerning how to reintegrate externalized

data and business functionality into the corporate-internal IT infras-

tructure.

Regarding compliance, cloud computing introduces the challenge that a

company’s IT has to compete with public cloud services. Methods con-

cerning how to address these issues have been investigated [BDA+11],

but there are currently no practical solutions from which patterns can

be extracted.

15http://www.dropbox.com/

89

http://www.dropbox.com/


3 Identification of Patterns for Cloud Computing

3.4.5 Data Storage
The consistency behavior of cloud storage offerings has a strong im-

pact on cloud applications: data inconsistencies have to be respected,

especially when multiple clients manipulate data. Inconsistency of data

replicas in distributed systems has been well researched by Tanenbaum

and Steen [TS06]. In cloud computing, consistency is often decreased

to increase availability and performance of the cloud offering [GL02;

Ram12; Bre12]. However, the detailed consistency behavior of cloud

offerings is very provider-specific: consistency behavior may be differ-

ent after creation of a data element than after an update; consistency

behavior for one client can be different for two concurrently accessing

clients, etc.

Therefore, the different consistency behavior of providers should be

investigated to identify similar behaviors. Existing cloud applications

should be considered to identify best practices to manage this storage

offering behavior.

The storage offering patterns presented in Fehling et al. [FLR+14] cover

some of the consistency behaviors experienced when using cloud offer-

ings. Also, some patterns are covered to encapsulate the idiosyncrasies

of storage offering interactions into specific application components.

These patterns are also summarized in Section 4.4.2. Unfortunately,

the consistency behavior of cloud providers is very diverse. Currently,

the specific behavior of every storage offering has to be considered

when developing a cloud application. Strauch et al. [SAB+13b] aim

to develop a data access layer that allows interactions with different

cloud providers in a standardized fashion. Strauch et al. [SAB+12] also

cover patterns for the management and migration of data in a cloud

environment.

90



3.4 Architectural Topics for Cloud Applications

3.4.6 License Management
Cloud properties impact existing licensing models. Hardware virtualiza-

tion is often used in cloud computing to enable resource pooling among

customers. This virtualization of physical hardware resources can hin-

der or void licenses issued per central processing unit (CPU) [Fer06]

on which the licensed software is executed. Network-based licensing

models [Fer06] consider the running instances of a software on a net-

work. In an elastically scaled cloud application, these instances would

be adjusted automatically to fulfill the automated management property
of cloud applications.

Therefore, different license models have to be respected during the

management of cloud applications. In particular, the optimization of

resource provisioning and decommissioning should respect license

costs.

In [FLM10], some means are investigated to optimize the distribution of

application users among multiple instances of a software stack. These

means especially consider resource and licensing costs.

3.4.7 Monitoring, Analysis, and Reporting
Cost savings is a major factor for the consideration of cloud computing.

However, the sharing of resources among customers may also be used

to reduce the environmental impact of applications [NL13a]. Either

motivation for reducing resources demands that information about

resource use is collected and reported to increase the desired impact of

cloud computing. For example, the emission of carbon monoxide may

have to be correlated to the products a company produces as customers

demand information about the ecological footprint of products [Gar10].

91



3 Identification of Patterns for Cloud Computing

The sharing of resources among different customers or different depart-

ments of a company may complicate such calculations.

Therefore, best practices and architectural concepts should be inves-

tigated to handle such crosscutting concerns in the monitoring and

reporting of cloud applications. The resource pooling property of clouds

introduces new challenges to this functionality.

Nowak et al. [NLS+11; NL13b] have identified patterns to manage the

environmental impact of process-based applications. One aspect of

these patterns is the reporting and visualization of ecological resource

consumption [NKL+12].

3.4.8 Multi-Tenant Cloud Middleware
Cloud providers exploit economies of scale by sharing resources among

multiple tenants [CC06]. A tenant is a legal entity, such as a company

or a private customer. Each tenant may have multiple associated users

who access the services of the cloud provider on behalf of the tenant.

Hardware virtualization is one technology to enable the sharing of

physical hardware among tenants. Sharing middleware among tenants

can increase the beneficial effects of sharing resources [GSH+07]. Isola-

tion between tenants regarding the accessibility and the experienced

performance, however, has to be ensured.

Therefore, middleware, for example, the database layer [CC06], has to

be redesigned to respect the fact that multiple tenants use it. Tenant

isolation has to be enabled regarding accesses to the offering, experi-

enced performance, and handled data [GSH+07]. Further challenges

92



3.4 Architectural Topics for Cloud Applications

regarding tenant isolation, version management, customer-specific con-

figurations, and the shifting of tenants among different versions of the

software and the runtime environment have to be considered.

The multi-tenancy patterns presented in Fehling et al. [FLR+14] and

summarized in Section 4.4 cover different sharing options for application

components among multiple tenants. These concepts will have to be

refined for different middleware offerings, such as databases, enterprise

service buses, etc. Schiller et al. [SSBM11] describe how multi-tenant

functionality can be added to relational database management systems

by sharing a common database schema among tenants and allowing

tenant-specific schema extensions. Strauch et al. [SAGL13] present a

multi-tenant enterprise service bus to enable access isolation among

tenants.

3.4.9 Organizational Structures
The use of cloud computing can be challenging to the organizational

processes of companies. Departments lose a certain degree of control

over their IT infrastructure by consuming services from the cloud. This

loss of control hinders the adoption of cloud computing. While the topic

of organizational structures is not directly relevant to the application

architecture, organizational changes may be a limiting factor for cloud

computing [KSS10]. In large companies, provisioning new IT resources

or accessing new IT services commonly require human management

approval. Such human interactions may hinder the automated manage-
ment property of cloud applications. If the organizational structure and

processes of a company are not adjusted to respect cloud computing,

the beneficial effects can be significantly reduced.

93



3 Identification of Patterns for Cloud Computing

Therefore, the necessary organizational changes required for the intro-

duction of cloud computing should be investigated. Cloud computing

not only changes application architectures, but also the development

and management tasks that have to be handled by company employees.

The changes in human tasks and how the workforce and organizational

structure of a company have to be adapted should be approached in an

organized fashion.

Manns and Rising [MR04] presented patterns to introduce organiza-

tional change in companies. Coplien [Cop06] presented organizational

patterns for software development. These catalogs may form a basis

for the process adaptations required to use cloud computing efficiently

in organizations.

3.4.10 Security
Many security issues of non-cloud applications also arise in cloud envi-

ronments. New threats may arise from malicious use of cloud resources

and from other cloud users. In the first case, cloud resources are used

for attacks, such as distributed denial of service (DDOS). The latter case

includes attacks of cloud users on applications of other customers; for

example, by exploiting bugs in hardware virtualization technology.

Therefore, the new security challenges arising in cloud environments

should be investigated. Existing best practices likely have to be extended

to manage new threats.

Many security issues of cloud applications are similar to those of

non-cloud applications. Best practices to address these issues have

been captured in a pattern format [SFH+06]. Encina, Fernandez, and

Monge [EFM14]; Fernandez, Yoshioka, and Washizaki [FYW14]; and

94



3.5 Information Sources for Cloud Computing Patterns

Hashizume, Yoshioka, and Fernandez [HYF11] have addressed misuse

and security patterns for cloud components. These patterns extend the

security patterns presented by Schumacher et al. [SFH+06].

3.5 Information Sources for Cloud ComputingPatterns
The information sources from which the cloud computing patterns

presented in this work have been identified are referenced from the

respective patterns. In general, the set of information sources can be

divided into (i) cloud providers and cloud applications, and (ii) existing

patterns in domains having architectural properties that are similar to

those of cloud computing.

3.5.1 Cloud Providers and Cloud Applications
The complete list of cloud offerings and existing applications that were

considered can be obtained from the bibliography of [FLR+14]. These

are especially referenced from cloud offerings patterns that capture the

abstract behavior of cloud offerings and help pattern users to select

the offering most suitable for their use case. The following large cloud

providers and tools were investigated in detail. In particular, their

guidelines and best practices on how to build applications using their

offerings were considered: Amazon Web Services (AWS)
16
, Windows

Azure
17
, VMware

18
, and OpenStack

19
.

16http://aws.amazon.com/
17http://azure.microsoft.com/
18http://vmware.com/
19http://www.openstack.org/

95

http://aws.amazon.com/
http://azure.microsoft.com/
http://vmware.com/
http://www.openstack.org/


3 Identification of Patterns for Cloud Computing

3.5.2 Existing Patterns
Patterns of other domains may solve similar problems to those arising

in the domain of cloud computing. Some of them may be applied

without alterations and should, therefore, be referenced from the cloud

computing patterns. Othersmay be beneficial in the scope of a particular

problem arising in cloud computing, even though this use may not

have been intended in the original version of the pattern. Therefore,

existing pattern catalogswere considered to (i) add references to existing

patterns if a pattern can be applied without alterations in the domain

of cloud computing and to (ii) create translation of the original pattern

concept to the domain of cloud computing if a similar use could be

found in the considered information sources.

Patterns for object-oriented applications by Buschmann et al. [BMR+96]

and Gamma, Helm, and Johnson [GHJ94] describe objects and their re-

lations. The components of which a cloud application is comprised, can

conceptually bemapped to objects covered by these patterns. They have,

therefore, been considered to identify similar concepts; for example, to

enable the separation of concerns in cloud applications.

Hohpe and Woolf [HW03] describe how applications can be integrated

using message exchange. Their pattern catalog starts with describing

abstract concepts related to how messages are exchanged (the message

channel), and how applications interact with a messaging system (the

messaging adapter). These abstract concepts are subsequently refined by

covering different types of adapters and message channel components.

Iteratively, the pattern users select patterns to handle problems of

message loss, message duplicity, ordering of messages, etc. Because

messaging applications and cloud applications are both distributed

96



3.6 Chapter Summary

applications, these patterns were reviewed in order to be integrated

with the created cloud computing patterns.

Hanmer [Han07] addresses patterns for fault-tolerant software. As

cloud applications rely on many resources, errors likely occur during

the runtime of a cloud application. The information sources considered

in this work were reviewed to determine the use of these patterns with

the aim to integrate them with the cloud computing patterns.

Schumacher et al. [SFH+06] provides security patterns that appear to be

generically applicable to IT applications. They have been investigated

for their applicability in cloud environments to be referenced by the

cloud computing patterns, as well.

Fowler [Fow02] describes patterns for enterprise application architec-

tures. Many of these patterns describe how business requirements can

be modeled and refined toward application functions supporting the

business case. Such generic patterns have been considered for inte-

gration with the cloud computing patterns. Thus, if the enterprise

architecture patterns are used during the functional design of an ap-

plication, they are mapped to cloud computing patterns to guide their

further refinement toward a cloud application.

3.6 Chapter Summary
Based on the properties of clouds defined by the NIST, requirements

that a cloud application should fulfill have been deduced to benefit from

such a runtime environment. The IDEAL cloud application properties

have been defined with respect to these requirements. Then, related

architectural styles – distributed systems, messaging, REST, and service-

oriented architectures – have been compared to the cloud application

97



3 Identification of Patterns for Cloud Computing

properties. This comparison has provided similarities showing that

cloud computing has evolved from a set of well-established concepts and

technologies. These similarities also suggest that existing applications

following the compared architectural styles might be suitable for a

cloud environment, as well. A cloud reference application has been

introduced, and each of its abstract components was covered. The

functionality of these components may then be identified in existing

applications to discover best practices for their creation. Furthermore, a

list of topics affected by the use of cloud computing has been introduced.

This list has covered new challenges in these topics and possible solution

strategies, as well as existing patterns and other related work.

Together, the (i) cloud properties, (ii) cloud application properties and

properties of similar architectural styles, (iii) reference cloud application,

as well as (iv) architectural topics affected by cloud computing have been

used to structure the cloud computing domain and coordinate pattern

search: for each information source, such as existing applications or

provider documentation, it was investigated how properties have been

enabled, how abstract components of the reference application have

been implemented, and how the affected architectural topics have been

addressed. Properties of the related architectural styles have also been

investigated, especially if these properties were not covered explicitly

by the IDEAL cloud application properties. The overlay of properties

of the related architectural styles to those of cloud applications make

applications following the related architectural styles well-suited for

a cloud environment. Therefore, it is likely that cloud applications

enable similar properties in their implementation without explicitly

mentioning the related architectural styles.

98



CHAPTER4

Design of Cloud Computing Patterns

In this chapter, the cloud computing pattern language is presented.

This includes the contributions C-3: “Format of Pattern Documents and

Graphical Elements”, C-2: “Cloud Computing Patterns”, and C-4: “Pat-

tern Language Metamodel”. A consolidated metamodel for the pattern

format and the interrelations among the patterns forming the cloud

computing pattern language is presented using the Unified Modeling

Language (UML)
20
. Then, the cloud computing patterns are summarized

and their evolution over time is discussed.

20http://www.uml.org/

99

http://www.uml.org/


4 Design of Cloud Computing Patterns

Pa

tte
rn Application

Pa

tte
rn IdentificationPa

tte
rn Apppplication

Pa

tte
rn Identification

Pattern Authorin

g

Figure 4.1 – Pattern authoring phase for cloud computing pat-
terns [FBBL14]

The covered topics can be mapped to the steps of the pattern authoring

phase of the pattern engineering process depicted in Fig. 4.1 and intro-

duced in Section 1.3. After the pattern identification phase, these steps

iteratively define the pattern language structure and create patterns

identified in the collected sources. These steps are summarized here

to describe how they have been applied in the domain of cloud com-

puting. Refer to [FBBL14] for detailed information about the pattern

engineering process.

Pattern Language Design: The structure of pattern documents and their

interrelations are defined during this step. Section 4.1 covers the pat-

tern document format and the semantics of its graphical elements and

sections. Section 4.2 describes the language structure of the cloud

computing patterns by employing a UML model.

100



Primitive Definition: This step defines the basic elements used by pat-

terns of a domain. This can include naming conventions and definitions

that ensure a consistent use of such terms and concepts in the pattern

documents. The cloud computing patterns have been homogenized

using the graphical primitives covered in Section 4.3.

Composition Language Definition: Many pattern languages use icons

and sketches to support the written text. Some pattern languages have

a formal specification for the compostion of such icons and sketches.

For example, Buschmann et al. [BMR+96] and Gamma, Helm, and John-

son [GHJ94] use UML as a composition language for their pattern of

object-oriented applications. For the cloud computing patterns, compo-

sition was not specified in such a formal manner, as the conformity of

created icons and sketches to composition guidelines could be ensured

manually. Section 4.3.3 covers guidelines addressing the composition

of graphical elements. Together with the graphical elements created

during the last step, these guidelines ensure that the created cloud com-

puting patterns have a consistent look and feel. The graphical layout of

the pattern document format has been similarly homogenized for the

cloud computing pattern language.

Pattern Writing: This step includes the actual creation of pattern doc-

uments. The cloud computing patterns have undergone shepherding

and were the subject of a writers’ workshop during the PLoP 2011

conference [FLR+11]. They were subsequently revised, and a second

three-day writers’ workshop was held was held during the ChiliPLoP

2012
21
. After these events, the patterns were continuously shepherded

by two members of the pattern community, and were finally published

in 2014 [FLR+14]. Section 4.4 summarizes all of these cloud comput-

ing patterns. For each pattern, its evolution from its original version

21http://hillside.net/chiliplop/2012/

101

http://hillside.net/chiliplop/2012/


4 Design of Cloud Computing Patterns

presented in [FLMS11] is covered to demonstrate how the activities

prescribed by the pattern writing phase improved the resulting cloud

computing patterns. Information is presented concerning how patterns

have been identified, how they were named, and how these decisions

may have changed between the initial version of a pattern and its

current one. Section 4.5 concludes and summarizes the chapter.

Pattern Language Revision: As patterns are added to the pattern lan-

guage over time, references among patterns may have to be revisited.

Patterns that were created during the first iterations of the pattern en-

gineering process tend to have few references to other patterns. For the

cloud computing patterns, each time a new pattern was written and it

referenced an existing pattern, adding a backward reference was consid-

ered. The tooling described in Chapter 6 introduces a pattern repository

that may recommend such references to be added by analyzing existing

ones in the pattern language.

4.1 Pattern Document Format
The pattern format of the cloud computing patterns has been inspired

by the pattern format of Hohpe andWoolf [HW03] and guidelines of the

pattern research community provided by Meszaros and Doble [MD98],

and Wellhausen and Fießer [WF11]. As covered in Section 3.1, the

messaging applications discussed by Hohpe and Woolf have similar

architectural principles as cloud applications. The cloud reference appli-

cation also uses asynchronous communication in the form of messaging.

Therefore, users of cloud computing patterns are likely to access the

patterns of Hohpe and Woolf [HW03], as well, at some point during

the application design. Having a similar format is, therefore, motivated

102



4.1 Pattern Document Format

by the fact that humans can access information more easily if it is pre-

sented in a homogeneous fashion [Pet95]. All cloud computing patterns

comprise the same document sections with the following semantics.

Pattern Name: This name is used to identify each pattern. Names have

been chosen to be usable as nouns in sentences. Pattern users may, thus,

refer to patterns easily, and patterns can be used as subjects in sentences.

For example, storing data in the form of key-value pairs in a cloud

offering was called key-value storage (119) rather than “storing key-

value pairs”. In the scope of cloud offerings, this was especially helpful

to introduce a common vocabulary to discuss offerings: products, such

as Amazon SimpleDB
22
or the table storage offered as part of Windows

Azure Storage,
23
may now be referred to as key-value storage, according

to the pattern they implement.

Intent: This is a short summary of the pattern, i.e., the problem and solu-

tion in one or two sentences. It enables the reader to quickly grasp the

essence of the pattern. Similar to newspaper articles, pattern documents

state all of the contained information at the very beginning, providing

increasingly detailed information as the reader progresses. Initially stat-

ing all relevant information enables readers to understand the pattern

quickly and progress to detailed information only if needed.

Icon: Each pattern has an icon of the same size as all other patterns

and with an identical border. If a pattern composes multiple other

patterns, this icon is used for graphical illustrations of this composition

(see Section 4.3.3 for the implicit composition language). Pattern icons

can be used similarly by IT architects in architectural diagrams of

their applications (see Section 7.1.1 for models created by an industry

partner).

22http://aws.amazon.com/simpledb/
23http://azure.microsoft.com/services/storage/

103

http://aws.amazon.com/simpledb/
http://azure.microsoft.com/services/storage/


4 Design of Cloud Computing Patterns

Driving Question: The problem answered by the pattern is stated as a

question. The reader is enabled to relate to the pattern by comparing

this question to the architectural problem he is trying to solve.

Context: This section of the pattern document describes the setting in

which the problem arises. It may, especially, cover forces and challenges

that make the problem difficult to solve; for example, a certain user

behavior that cannot be controlled by the IT architect. The context

section may also cover naive solutions to the problem and explain

why they are commonly unsuccessful. In earlier versions of the cloud

computing patterns [FLMS11; FLR+11], a discrete “challenges” section

existed that followed the context section. During the evolution of the

cloud computing patterns, this separation proved difficult to maintain,

as entities forming the context of a pattern, such as a user group or a

certain cloud offering, often directly led to these challenges. Therefore,

these sections have been merged into a single context section so that

the description of entities forming the context can be directly followed

by a description of why their behavior and other considerations lead to

challenges.

Solution: This section briefly states how the pattern solves the problem.

It is kept brief and only covers the essence of the solution. This enables

readers to quickly assess a pattern through its intent, driving question,

and solution.

Sketch: The solution is supported by at least one graphical sketch. It

depicts the functionality of the solution or the resulting architecture

after application of the pattern. In particular, this sketch may use the

icons of other patterns if they are composed by the pattern described

in the current document.

Result: This section describes the effects achieved by following the

steps prescribed by the solution. It also provides details about the

104



4.2 Pattern Language Structure

implementation of the pattern. In particular, new challenges arising

during or after the implementation of a patternmay be covered, possibly

with pointers to other patterns describing solutions to these problems.

Variations: Often, patterns can be applied in various ways, depending

on slightly different or additional challenges. These differences may not

be significant enough to justify description of their respective solutions

in individual pattern documents. Such slight alterations of the context

and solution are covered as variations of the pattern.

Related Patterns: Patterns reference each other to express, for example,

that they describe alternative solutions in similar contexts or that the

application of one pattern leads to problems solved by another pattern.

Most of these references are covered in the related patterns section.

The pattern metamodel (see Section 4.2) presents the reference types to

be used by the cloud computing patterns — textually in the book and

with tool support, as described in Chapter 6.

Known Uses: This section summarizes the known applications of the

pattern. In particular, this subsumes the information sources from

which the pattern has been abstracted.

4.2 Pattern Language Structure
The structure of the cloud computing pattern language is governed

by the metamodel shown in Fig. 4.2. The central element of the pat-

tern metamodel is the Pattern. Each pattern has a name as identi-

fier and is further characterized by an intent, icon, and driving

question. In addition to the Sections constituting the pattern, these

elements define the pattern document format detailed in the previous

section of this work. A section of a pattern may contain written text

105



4 Design of Cloud Computing Patterns

Category

ReferenceType

0...1

1Reference

categorized_by

Figure 4.2 – Metamodel of the cloud computing pattern language

as TextualElement and images as specified by ImageElement. Each

Section has a title, as specified by the enumeration depicted in the

lower right of Fig. 4.2. Patterns are categorized by one or more

Categories, which form a category tree through a parent relationship.

The interconnections among pattern documents, categories, or external

sources are handled by References. In particular, PatternReferences

point to other patterns, CategoryReferences point to categories, and

ExternalReferences point to documents external to the pattern lan-

106



4.2 Pattern Language Structure

guage, such as websites, research paper, and other resources. Most

references are respesented by a TextualElement part of a Section. All

References have a ReferenceType specified by the hierarchy seen on

the lower left of Fig. 4.2. The semantics of these reference types are

covered in the following section. Restrictions on the pattern language

structure that could not be expressed by UML itself are captured by

additional constraints covered in Section 4.2.2.

4.2.1 References among Patterns
The semantics of the reference types introduced by the pattern language

metamodel shown in Fig. 4.2 are as follows. The toolchain described in

Chapter 6 allows bidirectional querying of these references.

RelatedTo: This reference type is neutral: it only states that the ref-

erenced pattern has some relationship to the referencing one. The

surrounding text of the Section in which this reference type is used

describes why the reference was established. Other reference types

were preferred over this one during pattern writing, as they have a

well-defined semantic and, thus, can be interpreted more easily during

(automated) queries in a toolchain (see Section 6.3).

InContextOf: References of this type to other patterns describe the

setting in which the referencing pattern can be applied. Often, multiple

patterns are referenced. This reference type is important to intercon-

nect cloud offering patterns of different categories. Patterns describing

the user group and the cloud runtime environment are not implemented

by the pattern user, but characterize these entities and provide the user

advice regarding under which conditions to choose a certain offering.

107



4 Design of Cloud Computing Patterns

Once this is done, the pattern user may employ the InContextOf ref-

erence to find the patterns that are applicable to the cloud application

architecture and are appropriate to this environment.

Alternative: This references a pattern that can be applied alternatively

to the referencing one. These patterns, therefore, solve a similar problem

in a different way, fromwhich a reader may select the most fitting one.

Composition: The referencing pattern uses the referenced pattern in its

solution to the problem. Such composite patterns, therefore, describe

often-used combinations of other patterns and use the icons of the

composed patterns in their sketches.

ConsiderNext: After reading the referencing pattern and deciding to

use it, the pattern user is pointed to another pattern that may be con-

sidered next. This reference type is used to describe a common order in

which cloud computing patterns should be considered; for example, to

provide a reading order that is other than linear.

4.2.2 Constraints on the Pattern Language Metamodel
In addition to the structure of the cloud computing pattern language

described by the model shown in Fig. 4.2, the following constraints

specified in OCL
24
should be fulfilled by any instance of this model.

The references among patterns need to be described by the pattern au-

thor, i.e., for each reference, explanatory text has to be given describing

why the referenced patterns are related to each other. Therefore, each

Category Reference, Pattern Reference and External Reference

must have an associated textual element bywhich it is displayed in order

24http://www.omg.org/spec/OCL/

108

http://www.omg.org/spec/OCL/


4.2 Pattern Language Structure

to be included in the explanatory text of a pattern section. References

of the ConsiderNext reference type are excluded from this constraint,

because ConsiderNext references are visualized outside of the pattern

document without additional text (see Section 5.1.2).

Constraint 1: A Reference with zero associated textual elements must

be of type ConsiderNext:

context Reference inv:

self.textualelement.size() = 0 implies

self.type.isTypeOf(ConsiderNext)

Listing 4.1 – OCL constraint for ConsiderNext references
The cloud computing patterns use images only as part of the solution

section. These sketches describe the abstract solution of the pattern.

Constraint 2: ImageElements must only be used in the section named

“Solution”:

context ImageElement inv:

self.section.name = "Solution"

Listing 4.2 – OCL constraint for sketches
The pattern metamodel specifies the allowed names of sections in the

form of the SectionName enumeration and that there are five sections.

In addition, no section name should be used twice.

Constraint 3: Each section name must only be used once within the

scope of a pattern:

109



4 Design of Cloud Computing Patterns

context Section inv:

self.allInstances -> forAll(s1|s1 <> self implies

if self.pattern <> s1.pattern then true

else self.name <> s1.name

endif

)

Listing 4.3 – OCL constraint for section names
References can be added freely to the sections. However, all references

to other patterns that set the context of a patterns, i.e. references of the

InContextOf type, should be contained in the context section.

Constraint 4: References of type InContextOf must only be used in the

context section of a pattern:

context Reference inv:

self.type.isTypeOf(InContextOf) implies

self.textualelement.section.name = "Context"

Listing 4.4 – OCL constraint for InContextOf references
The pattern metamodel specifies KnownUse as a ReferenceType. How-

ever, this type should only be used for external references, i.e. to point

to solutions implementing the pattern or to sources from which it has

been abstracted.

Constraint 5: The KnownUse reference type must not be used for

Category References or Pattern References:

context Reference inv:

self.type.isTypeOf(KnownUse) implies

self.isTypeOf(CategoryReference) = false

AND self.isTypeOf(PatternReference) = false

Listing 4.5 – OCL Constraint for the KnownUse Reference Type

110



4.3 Graphical Design

4.3 Graphical Design
During the authoring of cloud computing patterns, a common look and

feel should be ensured (see Section 2.1.1). This homogenization of the

pattern document structure has been extended to the graphical elements

used in patterns, again to increase perceptibility: humans can access

information that is characterized by a common look and feel more

easily [Pet95]. The following sections describe the homogenization

of the pattern document layout and the graphical elements in greater

detail.

4.3.1 Pattern Document Layout
In addition to comprising the same sections, the layout of the pattern

format should be homogenized for different purposes. The layouts

covered in the following are: reading layout, presentation layout, and

overview layout. The similarity of the layouts is intentional to increase

accessibility of the patterns.

Reading Layout: This is the layout of the pattern format used in books

and on websites. The conceptual reading format is shown in Fig. 4.3a.

The pattern name is used as a heading, followed by a full-width intent

of the pattern that is separated by a different background color. The

pattern icon is depicted below this intent box, with the driving question

located next to it in italics. After the document has been started in this

fashion, the remaining sections of the pattern format follow.

Presentation Layout: The layout of the pattern format to be used in

presentations, as shown in Fig. 4.3b, starts similarly as the reading

format with intent, icon, and driving question. Below this heading, the

separate pattern sections are summarized. If the pattern is covered on

111



4 Design of Cloud Computing Patterns

Intent

Icon

Context

Result

Sketch

...

(a) Reading Layout

Intent

Icon

Sketch

(b) Presentation Layout

Icon
Intent

Icon

(c) Overview Layout

Figure 4.3 – Layouts of cloud computing patterns

more than one slide, the heading is repeated on each slide. In this way,

the intent, icon, and driving question remain visible at all times.

Overview Layout: If multiple patterns are to be included in a layout with

limited space, the icon is shown with the pattern name in italics below

or to the right. As an extended form, the intent may be included, as well.

In this case, the pattern icon is used in combination with the pattern

name in bold, and the intent on its right. This layout has also been used

for the summarized patterns Section 4.4. Both overview layouts are

shown in Fig. 4.3c.

112



4.3 Graphical Design

4.3.2 Graphical Elements Used in Patterns
The icons and sketches of patterns use similar graphical elements that

were homogenized to increase the accessibility of the pattern. Whereas

pattern icons are designed to be used in other patterns’ sketches, graph-

ical elements covered in this section can be considered as architectural
primitives [ZA08]. These graphical elements are, therefore, not patterns

but concepts that are used by multiple patterns. In the domain of cloud

computing, such concepts are, for example, an application component,

a virtualized server, or a communication channel. Such graphical ele-

ments should be homogenized in the patterns of a language to ensure

a consistent look and feel. Whereas Zdun and Avgeriou [ZA08] de-

fined architectural primitives to be used in UML models, for the cloud

computing patterns, the following graphical primitives have been used

in a homogeneous fashion throughout all pattern documents. For the

definition of composition rules covered in the following section, the

list of graphical elements shown in Table 4.1 considers the types entity,
annotation, connector, and region. Entities constitute modeling elements

used in pattern icons and sketches. They can be connected with each

other or annotated to each other using the connectors and annotations,

respectively. Multiple entities may also be summarized using regions.

Table 4.1 – Graphical elements used by cloud computing patterns
Entities

Application Component: Independent and isolated part of an
application that offers a certain functionality.

Certificate: Used to depict that encryption or signatures are

involved in a communication.

113



4 Design of Cloud Computing Patterns

Cloud Icon: Used to depict a cloud in a pattern icon.

CPU: Central processing unit of a computer.

Crash: Depicts a failure or erratic behavior. Unlike an error,
a crash may not be notified and is thus harder to detect.

Data: Depicts state information to denote that state is stored

by an entity.

Data Elements: Depict state information in a smaller granu-

lar form than the data element.

Delay: Depicts a period of time during which no activity

occurs.

Development: Depicts the activity of creating an application

or another software artifact.

Error: Depicts a failure. Unlike a crash, errors are commonly

reported and can, thus, be more easily reacted upon.

File: Depicts a collection of data.

Firewall: Depicts an entity that controls and possibly re-

stricts the communication passing through it.

Folder: Depicts a logical set that may contain multiple files.

114



4.3 Graphical Design

Foreign Key: Depicts a dependency of one data element on

other data elements.

Hard Disk: Depicts the local persistent storage device of a
computer.

Load Balancer: Depicts an entity that distributes communi-

cation passing through it among a set of receivers.

Management: Depicts an activity or functionality handling

the configuration of other entities.

$
Metering and Billing: Depicts an activity or functionality

measuring the use of an entity to charge customers.

Memory: Depicts the local volatile storage of a computer.

Message: Depicts a small amount of information exchanged

asynchronously by communication partners.

Message Channel: Depicts a connection between two com-

munication partners to exchange messages.

Monitoring: Depicts functionality used to monitor the use,

behavior, health, or other properties of an entity.

Networking Card: Depicts the hardware of a computer used

to exchange information over a network.

Read Access: Depicts an activity that retrieves data.

115



4 Design of Cloud Computing Patterns

Server: Depicts a physical or virtual computer hosting ap-

plication functionality.

ID
a
b
c

Table Data: Depicts data that is organized in tabular form.

Dependencies among tables may exist.

Tree Structure: Depicts data that is organized as a tree with

one root element and multiple child elements.

User Group: Depicts the set of users accessing an application

or function.

Write Access: Depicts an activity that creates or changes

data.

Annotations

Function Execution: Denotes that the annotated entity exe-

cutes an internal function.

2a

2b

1

3

Process: Indicates the order in which annotated entities are

active; for example, for sending and receiving messages.

Processing: Indicates that the functionality offered by the

annotated entity can be used to process the workload.

Prohibition: Indicates that the annotated entity disallows

access of a certain type.

User Interface: Indicates that the annotated entity offers

interfaces that can be accessed by humans.

116



4.3 Graphical Design

Connectors

Annotation Link: Annotations can be associated with anno-

tated entities using these links.

Communication: Asynchronous or synchronous exchange

of information.

Inside View: Internals of an entity, i.e., the component on

left of the connector can be detailed in the box on the right.

Interaction: Complex interaction among partners, including

accesses to provided functionality.

Regions

Name

Cloud Environment: Depicts the boundaries of a cloud host-

ing environment.

Composite Component: Summarizes multiple entities or pat-

tern icons into one application component.

Name
Data Center: Depicts the boundaries of a traditional data

center.

Name Tier: Summarizes multiple logical application components

into a deployable unit.

ACID Transaction: Depicts the boundaries of a transactional inter-

action that guarantees ACID properties.

117



4 Design of Cloud Computing Patterns

4.3.3 Composition of Graphical Elements
Patterns of object-oriented software architectures [BMR+96; GHJ94] use

UML as a modeling language for sketches. The graphical elements of

the cloud computing patterns are also composed to form such sketches,

but are not restricted to a formal modeling language. Such a formal

languagewas not used, as the number of types of graphical elementswas

not completely determined when the authoring of the cloud computing

patterns was initiated. Therefore, a higher degree of freedom was left to

the pattern authors. Now that the types of graphical elements have been

defined as described in the previous section, a formal specification seems

feasible. The outlook given in Chapter 8 discusses the requirements

to be fulfilled in order to tackle this issue. Even though the current

sketches of the cloud computing patterns are not governed by a formal

composition language, the following composition rules were followed

during their creation.

Entities and Connectors: The graphical elements representing an entity

should be connected through graphical connectors. The graphical con-

nectors are: interaction, annotation, and inside view. All other graphical

elements are entities. In particular, the pattern icons may also be used

as entities. Entities may be placed anywhere on the canvas, and two

entities may then be connected by one or more connectors. Examples

for such compositions are given in Fig. 4.4.

Communication and Interaction: A uni- or bi-directional communication
may be expressed by the use of an arrow to indicate that two entities

communicate by exchanging information. This information exchange

can be synchronous or asynchronous using message channels as shown

in Fig. 4.4a. If the interaction is more complex, i.e., functionality of

another component is accessed multiple times in a certain order or

118



4.3 Graphical Design

Processing
Component

Data Access
Component

(a) Two patterns and connec-

tors

periodic
backup

Stateful
Component

Blob
Storage

(b) Two patterns and a com-

plex interaction

Processing
Component

Data Access
Component

(c) Two patterns and connec-

tors with annotations

Internal State

(d) Inside view of a component

with internal state

Cloud Datacenter

(e) Enclosing regions and ap-

plication components

(f) Enclosing region and

servers hosting application

components

Figure 4.4 – Exemplary compositions of graphical elements used in cloud
computing patterns

119



4 Design of Cloud Computing Patterns

complex dependencies are to be expressed, more general interactionmay

be shown using a larger arrow than for communication. Explanatory

text is added to such an arrow, as can be seen in Fig. 4.4b, to describe

the complex interaction.

Annotations: Additional information can be given for entities using

the annotation connector, as seen in Fig. 4.4c. This denotes that the

annotated information is relevant to or contained in the annotated

entity. In the case of message channels, the contained messages may

also be positioned on top of the message channel without an additional

annotation link. A data entity and server entity may be used in a similar

fashion to express that they contain other entities.

Inside View: The inside view connector is used to depict even more

detail about an entity than using an annotation connector. The inside of

an entity is detailed in an enclosing region (refer to the next definition)

to show internal components of the entity, as shown in Fig. 4.4d.

Enclosing Regions: The graphical elements of architecture layer, cloud
environment, and data center are regions; thus, they may contain en-

closed entities. These entities comprise the region or are hosted in

it, as shown for application components in Fig. 4.4e and servers in

Fig. 4.4f. Connectors may pass over region boundaries, but entities are

commonly fully enclosed in a region and not positioned on its border.

Architecture regions can be used to model an application stack. Thus,

an architecture region placed above another architecture region is con-

sidered to use the functionality of the region below. If an architecture

region contains patterns, it implements these patterns. The boundary of

icons included in architecture regions may be omitted, as the boundary

of the architecture region and the boundaries of pattern icons appear

identical.

120



4.4 Summary of Cloud Computing Patterns

Composite Cloud Applications

Cloud Application Architectures

Cloud Offerings

Cloud Computing Fundamentals Cl
ou

d 
A

pp
lic

at
io

n
 M

an
ag

em
en

t

Figure 4.5 – Categories of cloud computing patterns (light gray: imple-
mented by cloud applications, dark grey: implemented by
cloud environments)

4.4 Summary of Cloud Computing Patterns

This section summarizes all cloud computing patterns considered in

this work and describes how they evolved from their initial publica-

tion [FLMS11] to the version published as a book [FLR+14]. Whenever

extensions or changes of patterns are discussed, this alteration has been

performed on their initial version and resulted in the version published

in the book. The following summary is structured according to the cat-

egories of patterns also used by this book. Fig. 4.5 provides an overview

of these pattern categories.

Patterns of the cloud computing fundamentals category describe cloud

service models and cloud deployment types analogous to the NIST

cloud definition [MG11]. They extend this definition by covering the

conditions under which a certain service model and deployment type

should be used for a cloud application. Patterns of the cloud offerings

category describe the functionality offered by cloud providers to be

used by an application for processing of workload, communication, and

data storage. Again, the patterns cover the conditions under which an

121



4 Design of Cloud Computing Patterns

offering should be selected, as well as the implications on the application

using them. Therefore, these two categories of the cloud computing

patterns are not implemented by the cloud applications, but by the

cloud environment. They describe how provider offerings behave and

when they should be used. An IT architect may use these patterns

to characterize the cloud environment to be used by an application.

Subsequently, patterns to be used in this environment can be selected,

through interrelation of patterns implemented by the environment,

with the following patterns implemented by cloud applications.

Patterns of the cloud application architectures category describe the

general structure of the cloud application and specific application com-

ponents for user interfaces, processing, and data handling. Patterns of

the cloud application management category describe how these appli-

cations can be managed during runtime using additional management

components, which rely on functionality provided by the application

itself, cloud offerings, and the cloud environment. Patterns of the

composite cloud applications category cover frequent combinations of

patterns from all other categories in various use cases.

The pattern summaries given in the following sections use the overview

layout introduced in Section 4.3.1. The pattern icon, name, and intent

used by this layout are cited from [FLR+14]. Pattern names are followed

by page numbers in parentheses for easier reference to their complete

version in [FLR+14]. To increase readability and to ensure conformity

to the overview layout, citations are not provided individually.

122



4.4 Summary of Cloud Computing Patterns

4.4.1 Cloud Computing Fundamentals
Patterns of this category describe the user group and tasks that have to

be handled by the cloud application in the form of workload patterns.

These are then followed by patterns for cloud service models and cloud

deployment types that characterize the cloud environment according

to the NIST cloud definition [MG11].

Application Workloads: This category of patterns characterizes

the degree to which an application is utilized. Utilization can have

different forms. For example, it can originate from user requests to the

application, from tasks that have to be executed automatically, or from

data that have to be handled by the application. In the first version

of the cloud computing patterns [FLMS11], these workload patterns

have not been included. However, patterns were needed to specify

the behaviors of users accessing the application. Analogously, these

workload patterns can also characterize the occurrences of automated

tasks handled by the application. The workload patterns presented

in [FLR+14], therefore, characterize the environment in which other

patterns can be applied, in order to handle that workload. Throughout

this work, pattern names are followed by the pattern’s page number in

[FLR+14] for convenient reference.

Static Workload (26)
IT resources with an equal utilization over time experience

static workload.

Periodic Workload (29)
IT resources with a peaking utilization at reoccurring time

intervals experience periodic workload.

123



4 Design of Cloud Computing Patterns

Once-in-a-lifetime Workload (33)
IT resources with an equal utilization over time disturbed

by a strong peak occurring only once experience once-in-a-

lifetime workload.

Unpredictable Workload (36)
IT resources with a random and unforeseeable utilization

over time experience unpredictable workload.

Continuously Changing Workload (40)
IT resources with a utilization that grows or shrinks con-

stantly over time experience continuously changing work-

load.

Cloud Service Models and Cloud Deployment Types: Patterns

of this category describe the cloud runtime environment of the

cloud reference application (see Section 3.3). They have been created

analogously to the NIST cloud definition: cloud service models describe

the type of resources a cloud provider offers: infrastructure, platform,

and software as a service. The cloud deployment type patterns cover

the different hosting environments that clouds may use: public cloud,
private cloud, community cloud, and hybrid cloud.

Infrastructure as a Service (IaaS) (45)
Physical and virtual hardware IT resources are shared be-

tween customers to enable self-service, elasticity, and pay-

per-use pricing.

Platform as a Service (PaaS) (49)
An application hosting environment is shared between cus-

tomers to enable self-service, elasticity, and pay-per-use

pricing.

124



4.4 Summary of Cloud Computing Patterns

Software as a Service (SaaS) (55)
Human-usable application software is shared between cus-

tomers to enable self-service, elasticity, and pay-per-use

pricing.

Public Cloud (62)
IT resources are provided as a service to a very large cus-

tomer group in order to enable elastic use of a static resource

pool.

Private Cloud (66)
IT resources are provided as a service exclusively to one

customer in order to meet requirements on privacy, security,

and trust.

Community Cloud (71)
IT resources are provided as a service to multiple customers

trusting each other in order to enable collaborative elastic

use of resources.

Hybrid Cloud (75)
Different clouds and static data centers are integrated to

form a homogeneous hosting environment.

Similar to the workload patterns, the application developer does not

implement these patterns of cloud service models and cloud deployment

types. Nevertheless, they have been created to extend the rather short

NIST cloud definition [MG11] and to give advice to the developer regard-

ing under which conditions (context of the patterns) he should choose

a service model or deployment type (solution of the patterns). Due to

the nature of the service models, application architecture patterns are

only connected to the Infrastructure as a Service (IaaS) (45) and Platform
as a Service (PaaS) (49) models: using these service models, a developer

125



4 Design of Cloud Computing Patterns

may create custom applications. Using the SaaS model, the customer

is merely a user of a provided application. Patterns addressing how to

use the SaaS model are, therefore, not covered, as this service model

is not used to host custom applications. The first version of the cloud

computing patterns [FLMS11] also contained a pattern for Composite

as a Serivce (CaaS). This service model described how providers offer

configurable application components that may be composed by users

to form custom applications. This functionality is still offered by some

cloud providers; for example, Amazon CloudFormation
25
allows the

configuration of multiple virtual servers that are deployed as a unit.

However, these aspects are generally part of an IaaS (45) or PaaS (49)
offering. A separation of this concept from other service models seems

unjustified, especially since the term “CaaS” has not been standardized

in the same form as the other service models by the NIST.

The cloud service models characterize the cloud environment accord-

ing to the portion of the application stack (see Section 3.3.3) that is

controlled by the provider, as depicted in Fig. 4.6. IaaS (45) indicates

that the provider controls the physical and virtual hardware on which

customers may install their own operating systems. PaaS (49) means

that the provider controls the operating systems and, possibly, installed

middleware, as well. Often, the notion of servers is invisible to the

customers, who only deploy their applications in this environment.

SaaS (55) means that the provider controls the applications as well,

which are only used by customers to support their business processes.

A proper characterization of the portion of the application stack con-

trolled by providers is especially important if an existing application

is to be migrated to a cloud environment. See the migration patterns

provided in [FLR+13] for a detailed discussion.

25http://aws.amazon.com/de/cloudformation/

126

http://aws.amazon.com/de/cloudformation/


4.4 Summary of Cloud Computing Patterns

Physical Hardware

Operating Systems

Middleware

Application Software

Virtual Hardware

Business Processes

SaaS

PaaS

IaaS

Figure 4.6 – Cloud service models and the application stack (adapted
from [FLR+14])

The cloud deployment types are characterized by the number of ten-

ants that may access them and the degree of resource sharing between

tenants. Tenants accessing the cloud may provision and decommission

resources in the cloud. The degree of resource sharing means that the

IT resources constituting the cloud environment are used to serve a

varying number of tenants. These two aspects can be used to describe

the cloud deployment types and their variations, as depicted in Fig. 4.7.

In the first version of the cloud computing patterns [FLMS11], the entity

that is hosting a cloud environment has been used as a characterizing

factor: one company in the scope of a private cloud (66), multiple com-

panies in the scope of a public cloud (62), etc. This did not match the

variations during the evolution of these patterns: a virtual private cloud

is accessed only by a few tenants — usually only one, but the underlying

IT resources are shared with all customers of the public cloud.

127



4 Design of Cloud Computing Patterns

Hybrid Cloud

Community Cloud Outsourced 
Community Cloud

Virtual
Community Cloud

Private Cloud Outsourced 
Private Cloud

Virtual 
Private Cloud

Public Cloud

Number of Tenants
accessing the Cloud

Number of Tenants
sharing IT Resources

hosting the Cloud

Dedicated Hosting
Accessed by one Tenant

Dedicated Hosting
Accessed by multiple Tenants

Shared Hosting
Accessed by one Tenant

Shared Hosting
Accessed by multiple Tenants

Figure 4.7 – Cloud deployment types and variations (consolidatedfrom [FLR+14])

Therefore, in addition to the number of tenants accessing the environ-

ment (Y-Axis), the number of tenants sharing the IT resources hosting

the cloud (X-Axis) has been introduced as a characterizing factor. In the

case of a public cloud, both characteristics are very high, as many tenants

access the environment and share the hosting resources. A community
cloud (71) is accessed by fewer tenants, as it is used by companies that

collaborate on a particular topic or share a certain domain, such as

healthcare. It can be hosted by one company collaborating with the

other companies, resulting in the smallest degree of resource sharing.

If the community cloud is outsourced, an external provider manages the

IT resources on which the cloud is hosted, leading to a higher degree of

128



4.4 Summary of Cloud Computing Patterns

resource sharing, while the same number of collaborating companies

accesses the cloud environment. IT resources of a public cloud can be

used to host a virtual community cloud. In this case, a large number of

tenants share the IT resources hosting the virtual community cloud, but
access to this environment is still limited to the collaborating compa-

nies. A private cloud is used only by a single tenant. Different versions

exist analogous to the community cloud by increasing the degree of IT

resource sharing. Finally, a hybrid cloud (75) has been introduced as a

combination of multiple clouds and other data centers.

4.4.2 Cloud Offerings
Patterns of this category describe the functional and nonfunctional

behavior of offerings provided in cloud runtime environments. This cat-

egory is divided into four sub-categories. Cloud environments character-

ize the technical behavior of clouds in general and cover commonly-used

combinations of the other offerings. Processing offerings describe how

workload can be executed in a cloud environment. Storage offerings

describe how data can be handled using provider-supplied functionality.

Communication offerings describe how a cloud application may enable

communication among its distributed components as well as with the

outside world.

Cloud Environments: Patterns of this category describe the func-

tional components of Infrastructure as a Service (IaaS) (45) and Platform
as a Service (PaaS) (49) offerings. The specific functions of Software
as a Service (SaaS) (55) offerings were not covered in [FLR+14], as the

SaaS market is still very versatile and patterns in this category would

describe how often-used applications, for example, for Enterprise

Resource Planning (ERP) or Content Management Systems (CMS),

129



4 Design of Cloud Computing Patterns

behave on an abstract level and when they should be used. As the

focus of the cloud computing patterns is, however, the building of

custom cloud applications, this service model is inapplicable. The

cloud environment patterns describe how cloud providers commonly

compose the other offering patterns to form PaaS and IaaS offerings:

Elastic Infrastructure (87)
Hosting of virtual servers, disk storage, and configuration of

network connectivity is offered via a self-service interface

over a network.

Elastic Platform (91)
Middleware for the execution of applications, their communi-

cation, and data storage is offered via a self-service interface

over a network.

Node-based Availability (95)
A cloud provider guarantees the availability of individual

nodes, such as virtual servers, middleware, or hosted appli-

cation components.

Environment-based Availability (98)
A cloud provider guarantees the availability of the environ-

ment hosting individual nodes, such as virtual servers or

application components.

In the first version of the cloud computing patterns [FLMS11], these

patterns were included as processing patterns (the next category) and

only focused on the IaaS (45) model. They have been extended to respect

the PaaS (49) model, as well. The most significant change has been in

the node-based availability (95) and environment-based availability (98)

patterns, which had initially been named “low availability computing

node” and “high availability computing node”, respectively. At first,

these two patterns, therefore, made a qualitative statement about the

130



4.4 Summary of Cloud Computing Patterns

availability of offered IT resources (high or low), which ultimately

proved inadequate, as this categorization of availability could only be

made with respect to the requirements of an application. Therefore,

the final versions of these patterns focus on the entity for which cloud

providers assure availability. This can be done either for individual

nodes or for the environment as a whole. In the former case, individual

nodes such as servers or application components are said to be available

a certain percentage of the time. In the latter case, individual nodes

may fail, but functionality is available to provision replacements.

Processing Offerings: Patterns of this category describe how

workload-handling functionality offered by a cloud provider behaves

and under which conditions it should be used. Covered functionality

ranges from the hosting of customer-specific servers and custom appli-

cations on provided middleware, to provider-supplied environments

that can be directly used for execution of tasks:

Hypervisor (101)
To enable the elasticity of clouds, the time required to provi-

sion and decommission servers is reduced through hardware

virtualization.

Execution Environment (104)
To avoid duplicate implementation of functionality, appli-

cations are deployed to a hosting environment providing

common functionality.

Map Reduce (106)
Large data sets to be processed are divided into smaller data

chunks and distributed among processing application com-

ponents.

131



4 Design of Cloud Computing Patterns

At the time of their first publication [FLMS11], these patterns subsumed

only the elastic infrastructure pattern and the availability patterns that

are now part of the cloud environment category. The other patterns

have been included to describe the functional behavior of a PaaS (49)
environment in a similar fashion. Themap reduce (106) pattern was orig-
inally part of the application architecture pattern category. However,

the provider market evolved and the functionality of this pattern —

distributed execution of data query tasks — is now offered by many

providers directly. Therefore, this functionality no longer has to be

implemented by the application developer, but can be accessed as an

offering to which only the data and queries to be executed have to

be provided. The map reduce pattern, therefore, focuses on how such

offerings behave conceptually and under which conditions they should

be used, rather then how to build such an offering.

Storage Offerings: Patterns of this category describe how offerings

to store data behave and under which conditions they should be used.

They are differentiated by the style in which they store data and how it

may be accessed:

Block Storage (110)
Centralized storage is integrated into servers as a local hard

drive to enable access to this storage via the local file system.

Blob Storage (112)
Data is provided in form of large files that are made available

in a file system-like fashion.

Relational Database (115)
Data is structured according to a schema that is enforced

during data manipulation and enables expressive queries of

handled data.

132



4.4 Summary of Cloud Computing Patterns

Key-Value Storage (107)
Semi-structured or unstructured data is stored with limited

querying support but high-performance, availability, and

flexibility.

While block storage (110) behaves similarly to hardware and is, there-

fore, associated with IaaS (45) offerings, blob storage (112) can often

be found in both IaaS and PaaS (49) offerings. The remaining storage

offerings are commonly part of PaaS offerings. Two adjustments

have been made to these storage offerings patterns since their initial

publication [FLMS11]. First, the relational database (115) pattern was

originally named “relational data storage”, which proved unfitting,

as the concept of relational databases is well established. Naming a

pattern describing this concept differently was inadequate. Second,

the key-value storage (119) pattern was originally named “NoSQL

storage” to indicate that query capability is “Not only SQL” [Fow12;

SF12]. It was renamed to state rather something this pattern is rather
than to define it by what it is not. Also, the NoSQL databases that are

currently evolving are quite different from a functional perspective. If

offerings evolve in this market that behave similarly, it is likely that

additional patterns need to be written. The remaining two patterns of

this category describe the consistency behavior that may be displayed

by all storage offerings:

Strict Consistency (123)
Data is stored at different locations to improve response time

and failure resiliency while consistency of replicas is ensured

at all times.

Eventual Consistency (126)
Performance and availability of data are increased by ensur-

ing data consistency eventually and not at all times.

133



4 Design of Cloud Computing Patterns

These patterns describe the considerations made by providers regarding

the consistency, availability, and partitioning tolerance of the offering

and the resulting impact on the application using the offering. Refer to

the CAP theorem [GL02] and its discussions by Ramakrishnan [Ram12]

and Brewer [Bre12] for detailed information.

Communication Offerings: Patterns of this category describe

offerings to exchange information between application components

and with the outside world. Due to the architectural similarities of

cloud applications and message-based applications (see Section 3.2.2),

the cloud computing patterns mostly consider messaging as a style of

information exchange:

Virtual Networking (132)
Networking resources are virtualized to enable customers

to configure networks, firewalls, and remote access using a

self-service interface.

Message-oriented Middleware (136)
Asynchronous communication is made robust and flexible

by hiding the complexity of addressing, routing, or data

formats.

Exactly-once Delivery (141)
The messaging system ensures that each message is deliv-

ered exactly once by filtering possible message duplicates

automatically.

At-least-once Delivery (144)
In case of failures that lead to message loss, messages are

retransmitted to assure they are delivered at least once.

134



4.4 Summary of Cloud Computing Patterns

Transaction-based Delivery (146)
Clients retrieve messages under a transactional context to

ensure that messages are received by a handling component.

Timeout-based Delivery (149)
Clients acknowledge message receptions to ensure that mes-

sages are received properly.

The virtual networking (132) pattern considers networking hardware and
is, therefore, part of the IaaS (45) model and the elastic infrastructure (87)
environment. The remaining patterns consider messaging, most often

part of a PaaS (49) offering, which is functionally described by the elastic
platform (91) pattern. Compared with their initial publication [FLMS11],

the message communication patterns focus more on a summary of the

messaging patterns described by Hohpe andWoolf [HW03], rather than

providing new versions of these patterns. Therefore, the pattern of reli-

able messaging has been omitted, as Hohpe and Woolf [HW03] already

describe it. New patterns have been described regarding the delivery

of messages: transaction-based delivery (146) and timeout-based deliv-
ery (149). In addition to the number of times a message may be delivered

(exactly-once or at-least-once), these patterns describe that a message

can be delivered within a transactional context or on a retry-basis if

delivery fails. The following cloud application architecture patterns

then describe, among other aspects, how to implement the client side

to interact with messaging systems displaying such behavior.

135



4 Design of Cloud Computing Patterns

4.4.3 Cloud Application Architectures
Patterns of this category cover fundamental cloud architecture princi-

ples that should be respected by all cloud applications in order to benefit

from a cloud environment. Cloud application component patterns refine

these principles to implement certain application functionality, such

as user interfaces, processing, or data access. Patterns for cloud inte-

gration cover how information can be exchanged among application

components hosted in different clouds and data centers. Multi-tenancy

patterns describe how the cloud application itself may be offered as a

service to multiple customers.

Fundamental Cloud Architectures: Patterns of this category should
be implemented as a minimal set by cloud applications to benefit from

a cloud environment:

Loose Coupling (156)
A broker encapsulates concerns of communication partner

location, implementation platform, time of communication,

and data format.

Distributed Application (160)
A cloud application divides provided functionality among

multiple application components that can be scaled out in-

dependently.

These two patterns describe how two of the cloud architecture prin-

ciples (see Section 3.1.3) can be implemented: distribution and loose
coupling. These two architectural principles form the basis for the

other architectural principles: isolation of state requires that application
components exist that may handle the state information. Elasticity
and automated management may not be required in all cloud applica-

tions, but if so, these properties are significantly simplified by loose

136



4.4 Summary of Cloud Computing Patterns

coupling. In the first version of the cloud computing patterns [FLMS11],

the distributed application pattern was named “composite application”.

However, this pattern name was changed, as it did not focus on the

fact that a cloud application comprised of multiple components should

be hosted in a distributed fashion, in accordance with the distribution
cloud computing property (see Section 3.1.3).

Cloud Application Components: Patterns of this category describe

how application components comprising a distributed application

implement certain application functionality. Furthermore, these

patterns consider the interaction of application functionality with

provider offerings.

Stateful Component (168)
Multiple instances of a scaled-out application component

synchronize their internal state to provide a unified behavior.

Stateless Component (171)
State is handled external of application components to ease

scaling-out and to make the application more tolerant to

component failures.

Application components can generally be divided into stateful
components and stateless components, i.e., those that maintain an

internal state and that do not, respectively. These patterns ensure the

isolated state property of cloud applications. Either type of component

can realize different functionality of the application, such as user

interfaces, processing, or data access:

User Interface Component (175)
Customizable user interfaces are accessed by humans.

Application-internal interaction is realized asynchronously

to ensure loose coupling.

137



4 Design of Cloud Computing Patterns

Processing Component (180)
Processing functionality is handled by elastically-scaled com-

ponents. Functionality is made configurable to support dif-

ferent requirements.

Batch Processing Component (185)
Requests are delayed until environmental conditions make

their processing feasible.

Data Access Component (188)
Access to data is handled by components that isolate com-

plexity, enable additional consistency, and ensure adjustabil-

ity of data elements.

Data Abstractor (194)
Data is altered to inherently support eventually consistent

data storage through the use of abstractions and approxima-

tions.

The processing component and batch processing component patterns both
handle workload. They differ regarding the time at which they pro-

cess this workload. While the processing component handles requests
immediately and relies on the elasticity of the cloud environment for

scaling, the batch processing component may delay the workload for fu-

ture processing. This distinction is made because some cloud providers

flexibly change resources prices over time. Also, this delay can be used

to introduce some flexibility to applications that do not run in the cloud:

resources that do not handle time-critical workload can delay it to sup-

port other application components during times of high demand. Later,

these components handle their own workload that has been delayed.

138



4.4 Summary of Cloud Computing Patterns

At some point, the application will have to access provider offerings.

The following processor patterns describe the interactions with these

offerings:

Idempotent Processor (197)
Application functions detect duplicate messages and incon-

sistent data or are designed to be immune to these conditions.

Transaction-based Processor (201)
Components receive messages or read data and process the

obtained information under a transactional context to ensure

processing.

Timeout-based Message Processor (204)
Clients acknowledge message processing to ensure that mes-

sages are processed. If a message is not acknowledged it is

processed again.

Multi-Component Image (206)
Virtual servers host multiple components that may not be ac-

tive at all times to reduce provisioning and decommissioning

operations.

Message duplicates or inconsistent data can be handled using idem-
potent processors. In its original version [FLMS11], this pattern only

considered message duplicates. It has been extended to interact with

storage offerings displaying eventual consistency (126) in a similar man-

ner. Transaction-based interaction may be used to interact with mes-

saging offerings or storage offerings. Initially, the transaction-based
processor only considered interactions with a message-oriented middle-
ware (136) and has been extended to additionally cover the interaction

with storage offerings. Timeout-based interaction is only available with

139



4 Design of Cloud Computing Patterns

message-oriented middleware (136), in which messages are retransmit-

ted if their receipt is not acknowledged; thus, there is a timeout-based
message processor. This interaction style is currently not used by stor-

age offerings. The cloud application architecture category was not

initially used [FLMS11]. The stateless component (171) and idempotent
processor (197) — both originally members of the fundamental patterns

category — have been moved to this category. To indicate the affilia-

tion of idempotent processing to these processor patterns, the original

“idempotent component” pattern [FLMS11] has been renamed to the

idempotent processor.

Multi-Tenancy: Patterns of this category describe how application

components comprising the cloud application can be shared among

multiple tenants. This is important if the cloud application itself is to

be offered as a service: the larger the portion of the application stack

that may be shared among tenants, the more efficient the offering of

the application [FLR+14].

Shared Component (210)
A component is accessed by multiple tenants to leverage

economies of scale.

Tenant-isolated Component (214)
A component avoids influences between tenants regarding

assured performance, available storage capacity, and acces-

sibility.

Dedicated Component (218)
Components providing critical functionality are provided

exclusively to tenants while still allowing other components

to be shared.

140



4.4 Summary of Cloud Computing Patterns

A different multi-tenancy pattern should be used with respect to the

required tenant isolation regarding accessibility, performance, data,

and other considerations. In their first version [FLMS11; MLU09], the

multi-tenancy patterns focused on the instance of application com-

ponents and were named “single instance component”, “configurable

instance component”, and “multiple instance component”, accordingly.

An instance was always associated with a particular tenant or multiple

tenants. In their current version, the multi-tenancy patterns do not

focus on the instance anymore — multiple instances are considered

to exist for all types of multi-tenancy components due to the elastic

scaling of the application.

Cloud Integration: Patterns of this category are used to enable

interaction between components that are hosted in different en-

vironments. This functionality should be separated from other

application components, which implement application functionality,

to ensure separation of concerns. The integration patterns cover

aspects of access to application functions, access to data, and message

exchange. If the locality of the data is important, for example, to ensure

high-performance access to it, data replication is also covered.

Restricted Data Access Component (222)
Data provided to clients from different environments is ad-

justed based on access restrictions.

Message Mover (225)
Messages are moved automatically between different cloud

providers to provide unified access to application compo-

nents using messaging.

141



4 Design of Cloud Computing Patterns

Application Component Proxy (228)
An application component is made available in an environ-

ment from where it cannot be accessed directly by deploying

a proxy.

Compliant Data Replication (231)
Data is replicated among multiple environments. Data is au-

tomatically obfuscated and deleted to meet laws and security

regulations.

Integration Provider (234)
Integration functionality such as messaging and shared data

is hosted by a separate provider to enable integration of

hosting environments.

The first version of the cloud computing patterns [FLMS11] did not

include any of these integration patterns.

4.4.4 Cloud Application Management
In addition to the functional implementation of application components

and their composition to form a cloud application, runtimemanagement

has to be handled after deployment. This is described by patterns of this

category. Management components are added to the cloud application

in order to handle runtime management. They implement management

processes captured as separate patterns describing their behavior.

Management Components: Patterns of this category describe inter-

actions with management interfaces of providers and management of

application configurations. Realizations of elasticity based on utiliza-

tion of IT resources, number of synchronous requests, and number of

messages is discussed. Resiliency of the application is also considered.

142



4.4 Summary of Cloud Computing Patterns

Provider Adapter (243)
Provider interfaces are encapsulated to separate concerns of

interactions with the provider from application functionality.

Managed Configuration (247)
Application components use a centrally stored configuration

to provide a unified behavior that can be adjusted simulta-

neously.

Elasticity Manager (250)
The utilization of IT resources on which an application is

hosted is used to adjust the number of required application

component instances.

Elastic Load Balancer (254)
The number of synchronous accesses is used to adjust the

number of required application component instances.

Elastic Queue (257)
The number of accesses via messaging is used to adjust the

number of required application component instances.

Watchdog (260)
Applications cope with failures automatically by monitoring

and replacing faulty application component instances.

Initially, only the elasticity patterns and the watchdog were published

[FLMS11] and were part of the application architecture pattern category.

As more management patterns were found, they have been summarized

in a separate category. The elasticity manager was first named the “elas-

tic component”. It was renamed to shift the focus from what is scaled

143



4 Design of Cloud Computing Patterns

(the component) to the entity that handles the scaling (the elasticity
manager).

Management Processes: Patterns of this category describe the

behavior of the management components. This behavior has been

kept separate from the management components, as the cloud

provider may offer the functionality of management components.

In this case, the management processes may be implemented as a

configuration of this management functionality or may be executed

by system administrators who manually access provider management

functionality.

Elasticity Management Process (267)
Application component instances are added and removed

automatically to cope with increasing or decreasing work-

load.

Feature Flag Management Process (271)
If the cloud cannot provide required resources in time, some

application features are degraded in order to keep vital fea-

tures operational.

Update Transition Process (275)
When a new application component version becomes avail-

able, running application components are updated seam-

lessly.

Standby Pooling Process (279)
Application component instances are kept on standby to

increase provisioning speed and utilize billing time-slots

efficiently.

144



4.4 Summary of Cloud Computing Patterns

Resiliency Management Process (283)
Application components are checked for failures and re-

placed automatically without human intervention.

These patterns are different from other cloud computing patterns: they

do not use the same graphical elements and implicit composition lan-

guage that the other patterns use (see Section 4.3.3). Instead, the Busi-

ness Process Model and Notation (BPMN)
26

is used to describe the

sketches that are part of their solutions. In the first version of the

cloud computing patterns [FLMS11], no management processes were

included.

4.4.5 Composite Cloud Applications
Following their initial publication [FLMS11], the cloud computing pat-

terns summarized in the previous sections have been used in several

applications. Recurring compositions of patterns in commonly occur-

ring scenarios have again been described in a pattern format. There

is a distinction between native cloud applications, which are common

combinations of patterns to fulfill the cloud architectural principles, and

hybrid cloud applications, which use different cloud environments.

Native Cloud Applications: Patterns of this category describe com-

mon pattern compositions to form applications. They are refined and

extended with other patterns to suit a use case. However, their essential

structure remains the same in many cloud applications.

26http://www.omg.org/spec/BPMN/2.0/

145

http://www.omg.org/spec/BPMN/2.0/


4 Design of Cloud Computing Patterns

Two-Tier Cloud Application (290)
Presentation and business logic is bundled to one stateless

tier that is easy to scale. It is separated from the data tier

that is harder to scale.

Three-Tier Cloud Application (290)
Presentation, business logic, and data handling are realized

in separate tiers to scale them according to their individual

requirements.

Content Distribution Network (300)
Applications component instances and data handled by them

are globally distributed to meet access performance require-

ments.

The two-tier cloud application and three-tier cloud application patterns

describe how application components are often summarized to physical

tiers; for example, virtual servers. These tiers are then deployed at a

cloud provider and may be managed independently of each other. The

difference between these patterns is the number of tiers: the three-tier

cloud application has user interface, processing, and data handling tiers,

while the two-tier cloud application summarizes the user interface

and processing functionality withins one tier. Three tiers are more

applicable if the user group is large or if many data sources are to be

accessed by the cloud application. Another concept found in many

cloud applications is a content distribution network. If the user group

of the application is globally distributed, multi-media content and other

large files served by the application are replicated globally to ensure

timely access to data.

Hybrid Cloud Applications: Patterns of this category describe

common use cases for cloud applications especially with respect to how

data centers that do not use cloud technologies may be integrated. Such

146



4.4 Summary of Cloud Computing Patterns

a distribution of application components among multiple environments

can solve problems of existing applications; for example, by moving

part of the functionality to a cloud environment during periods of high

workload.

Hybrid User Interface (304)
Varying workload from a user group interacting asyn-

chronously with an application is handled in an elastic envi-

ronment.

Hybrid Processing (308)
Processing functionality is hosted in an elastic cloud while

the remainder of an application resides in a static environ-

ment.

Hybrid Data (311)
Data of varying size is hosted in an elastic cloud while the

remainder of an application resides in a static environment.

Hybrid Backup (314)
Data are periodically extracted from an application to be

archived in an elastic cloud for disaster recovery purposes.

Hybrid Backend (317)
Backend functionality (data-intensive processing and stor-

age) is experiencing varying workloads and is hosted in an

elastic cloud.

Hybrid Application Functions (320)
Some application functionality provided by user interfaces,

processing, and data handling is hosted in an elastic cloud.

147



4 Design of Cloud Computing Patterns

Hybrid Multimedia Web Application (323)
Website content is mainly served from a static environment.

Multimedia files are served from an elastic high-performance

environment.

Hybrid Development Environment (326)
A production runtime environment is replicated and mocked

in an elastic environment where applications are developed

and tested.

Moving the user interface, processing and data handling functionality to

a cloud is discussed by the patterns of hybrid user interface (304), hybrid
processing (308), and hybrid data (311), respectively. These patterns

may also be used in combination. A distribution based on the offered

functionality or media content is also discussed. The hybrid development
environment (326) pattern addresses the special use case regarding how

applicationsmay be created in the cloud during development and testing.

This pattern may be used to create a cloud application, as well as an

application that is not running in a cloud environment.

4.5 Chapter Summary
This chapter has covered the structure of the cloud computing pat-

tern language. This has subsumed the pattern document format and

the allowed relationship types among patterns. Graphical elements

used in pattern icons and sketches have been homogenized to ensure

a common look and feel. Guidelines addressing the composition of

these graphical elements have been provided. Finally, all of the cloud

computing patterns contained in [FLR+14] have been summarized. If ap-

plicable, patterns have been compared with their first version, published

in [FLMS11].

148



CHAPTER5

Application of Cloud Computing Patterns

In this chapter, the process of searching and applying the cloud comput-

ing patterns presented in Section 4.4 is covered. This chapter addresses

the conceptual organization of patterns to enable tool support: C-5:

“Pattern Organization Tool”. Also, C-6: “Pattern-Based Design Method

for Cloud Applications” is presented in detail, describing the steps to

be followed when creating a cloud application. The covered topics can

be mapped to the pattern application phase of the pattern engineering

process introduced in Section 1.3. After a significant set of patterns

has been authored, the steps of this phase consider making the pattern

language accessible to pattern users and enable them to create an archi-

tecture based on these patterns. The steps followed in the scope of the

149



5 Application of Cloud Computing Patterns

Pa

tte
rn Identification

Pattern Authorin

g
Pa

tte
rn Identification

Pattern Authorin

g

Pa

tte
rn Application

Figure 5.1 – Pattern application phase for cloud computing pat-
terns [FBBL14]

cloud computing patterns are covered in the following paragraphs. Re-

fer to [FBBL14] for a generic version of the pattern engineering process

that may be applied in other domains.

Pattern Search and Recommendation: The structure of the pattern lan-

guage is used to enable the recommendation of patterns to readers:

references among patterns are followed to navigate between patterns.

Accessibility of the cloud computing patterns is detailed in Section 5.1. It

relies on a categorization of the cloud computing patterns with respect

to the cloud reference application (see Section 3.3) and the references

of the patterns among each other, which are defined by the cloud com-

puting pattern language structure (see Section 4.2).

Pattern-Based Solution Design: This step develops a method to apply

the cloud computing patterns in a guided fashion. For the cloud com-

150



5.1 Accessibility of Cloud Computing Patterns

puting patterns, a design method for cloud applications is covered in

Section 5.2, describing how to create new cloud applications using the

cloud computing patterns.

Refinement of the Solution Design: This step considers the transformation

of the application architecture towards its deployment. For the cloud

computing patterns, this means that the set of provider offerings to be

used is determined based on the abstract architecture. A methodology

to map application requirements to provider offerings using patterns is

detailed in [FLR+14].

Instantiation of the Solution Design: This step includes the development

to create the cloud application code, deployment artifacts, provider

offering configurations, and other features. The tool chain discussed

in Chapter 6 supports this implementation step as well as the previous

refinement step. Activities performed during these steps are always

provider- and use case-specific; therefore, they are not discussed in

general for the cloud computing patterns in this chapter. Refer to the

evaluation in Section 7.1, which focuses on these aspects in the scope

of two corporate settings of industry partners.

5.1 Accessibility of Cloud Computing Patterns
When users need to apply patterns to their problems at hand, methods

are necessary to find an initial set of applicable patterns. From there,

interrelations of the patterns can be followed to navigate from pattern

to pattern. In this section, these interrelations between cloud computing

patterns are initially covered. Second, finding and selecting an initial

set of patterns is addressed by means of pattern categorization and

ordering their consideration in a use case.

151



5 Application of Cloud Computing Patterns

Category 1

Category 2

Figure 5.2 – Pattern map for two exemplary categories and five patterns

5.1.1 Categories of Cloud Computing Patterns

The cloud computing patterns have been categorized according to the

reference cloud application (see Section 3.3). Each pattern, therefore,

describes aspects of the user group, the cloud runtime environment, or

the cloud application. This helps the reader to find applicable patterns

related to the entity of the cloud reference application he needs to

characterize or build. The user will not implement all of the cloud

computing patterns: some describe entities of the reference applications

that the pattern user cannot influence, such as user behavior or offering

functionality. Such patterns help to characterize the context of the

problem at hand. Then, through the interrelations, the IT architect using

the patterns can find the applicable patterns that he may implement.

The individual categories of cloud computing patterns are not covered

here, but are provided as part of the pattern summaries in Section 4.4.

5.1.2 Order of Pattern Consideration

The considerAfter relationship has been used to generate pattern

maps analogous to the one depicted in Fig. 5.2 for each chapter of the

152



5.2 Pattern-Based Design Method for Cloud Applications

book [FLR+14] depicting all patterns covered in the respective chapter.

At the beginning of each chapter, such a pattern map indicates the

reading order suggested by the considerAfter relationship among

patterns. This enables readers to identify patterns by which the chapter

can be accessed: these patterns are not referenced by other patterns

using the considerAfter reference type. If one of these patterns is

then identified to be applicable to the use case at hand, the pattern map

indicates which patterns to consider next. Analogously, if a pattern is

inapplicable, the pattern map provides advice about which pattern of

the chapter may be left out.

5.2 Pattern-Based Design Method for CloudApplications
The method presented in Fig. 5.3 considers the creation of a new appli-

cation, which will use a cloud as the runtime environment. In contrast

to the general accessibility of the cloud computing patterns covered

in the previous sections, this method describes a process to follow

and the patterns to consider in each phase. Thus, it provides a design

path in the pattern language to create a new cloud application or to

restructure an existing one. Similar to the other means to access the

cloud computing pattern language, this set of patterns should not be

considered finite for this design goal. Instead, the covered patterns are

fundamental for use with the respective design phase and provide entry

points to the pattern language from which additional patterns can be

accessed using references among them. The method itself has not been

modeled as references in the pattern language to denote the order of

pattern consideration in the respective phases for the following reasons.

First, each phase should be described in detail and should cover the

153



5 Application of Cloud Computing Patterns

Decomposi on Workload State Component 
Re nement

Elas city and 
Resiliency

Distributed 

(160) (26)

(29)

(33)

(36)

(40)

(168)
Stateless 

(171)
Strict 

(123)

(126)

Middleware 
(136)

(175)

(180)
Data Access 

(188)
Data 

(194)3,14159...

3,14

(95)

(98)

(206)

(185)

(250)

(254)

Queue 
(257)

(260)

Figure 5.3 – Phases of the pattern-based design method for cloud applica-
tions and patterns considered during each phase

reason why a pattern is considered. Second, the description of this

methodology should discuss other design methods and, especially, how

these methods can be integrated with the cloud-specific design method.

After all, cloud computing essentially introduced additional aspects to

augment the architecture of IT applications. General design methods,

thus, are still applicable. The pattern-based design method for cloud

applications was originally introduced in [FLR14]. It is presented here

in an extended and revised form, especially since integration with other

existing design methods could not be covered in the original publication

due to space limitations. An overview of the phases comprising the

method and the patterns considered during each phase is shown in

154



5.2 Pattern-Based Design Method for Cloud Applications

Fig. 5.3. The method has been applied in two industry settings as part

of the validation presented in Chapter 7.

5.2.1 Decomposition
The architectural principles of cloud computing covered in Section 3.1

lead to a requirement for cloud applications: cloud resources are pooled

among customers. Therefore, a fundamental cloud application property

was identified to be the distribution of its application functionality

among multiple application components. To enable this distribution,

the application functionality is decomposed during this phase to obtain

multiple application components that may be hosted independently on

cloud resources.

Involved Patterns: distributed application (160).

The distributed application pattern covers three different strategies to

decompose application functionality. First, layer-based decomposition
groups the application functionality by purpose; for example, user in-

teraction, business logic, or access of data storage. These functional sets

form application components, which are then arranged as logical layers

to govern the allowed interaction among functional groups. Compo-

nents on a higher layer may only interact with components residing

on the same layer or the layer below. This decomposition reduces the

dependencies among components on the different layers and ensures

that changes to one layer remain manageable with respect to the impact

they have on other layers.

Second, process-based decomposition relies on a model of the business

process supported by the application. For example, an insurance claim

155



5 Application of Cloud Computing Patterns

process could be specified using modeling languages such as the Busi-

ness Process Execution Language (BPEL)
27

or the Business Process

Model and Notation (BPMN)
28
to capture involved activities, the con-

trol flow among them, as well as the data generated and required by

the process. Each activity may be handled by humans or IT resources.

In the latter case, application functionality is often provided as Web

services [WCL+05], which are then enacted by the business process.

The decomposition of application functionality into Web services can,

thus, be governed by the business process activities they support.

Third, pipes-and-filters-based decomposition also groups application

functionality by its purpose, similar to the layer-based decomposition

approach. The interaction among components is, however, restricted

to be asynchronous; for example, using messaging. Each application

component (or filter) has input queues from which it retrieves asyn-

chronous requests and output queues to which it forwards processed

requests. The decomposition approach, in particular, ensures the loose
coupling property introduced in Section 3.1.3.

Related Design Methods: Eeles and Cripps [EC09] present a general

process to design an application architecture and cover detailed tasks

for requirements engineering, documentation, definition of a logical

architecture, and its refinement toward a physical architecture. They

also cover software engineering methods and project management pro-

cesses to coordinate developers, reviewers, and other involved parties.

The design method for cloud applications can be integrated into these

broader and more extensive approaches during the creation of the ar-

chitecture specification. Methods to develop the application, manage

27http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html
28http://www.omg.org/spec/BPMN/2.0/

156

http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html
http://www.omg.org/spec/BPMN/2.0/


5.2 Pattern-Based Design Method for Cloud Applications

requirements, review code, and perform other functions can form the

broader setting in which the design method presented here is used.

Fowler [Fow02] provides enterprise application architecture patterns

and, especially, a domain model pattern that covers how the required

functionality and the application data can be expressed during the de-

sign of the application. Other patterns of this pattern catalog then

describe how the domain model may be refined to logical application

components and to a physical system architecture. The domain model

pattern and the refinement of logical application components to a phys-

ical system architecture are used by the distributed application (160)

pattern.

Daigneau [Dai11] covers service design patterns that can be consulted

during the refinement of application components if the cloud applica-

tion is to comprise a service-oriented architecture (SOA). In particular,

the authors cover the design of service interfaces, service implemen-

tations, and interactions among services. These patterns can be used

to decompose functionality into components and and further refine

them.

If the application is to be implemented using object orientation,

Cheesman and Daniels [CD01] may be considered during the decom-

position of application functionality into components based on UML
29

models.

If existing software or provider-supplied offerings are to be used to

realize application functionality, these artifacts should be considered

during the decomposition, as well. The design may be simplified by

mapping the complete functionality of application components to ex-

isting software and vice-versa, instead of implementing application

29http://www.uml.org/

157

http://www.uml.org/


5 Application of Cloud Computing Patterns

components using existing software in combination with custom code.

For example, if existing user management software is to be used, it

may simplify the application design if this software is mapped to a

single user management component. However, existing functionality

should not influence the application design too significantly, as such

general implementations may be suboptimal for the business case at

hand. In [FLR+14], a meet-in-the-middle mapping method of appli-

cation functionality and provider-supplied functionality is covered to

respect existing functionality during the decomposition.

5.2.2 Workload
The loose coupling cloud application property (see Section 3.1.3) enables

the cloud application to scale out and cope with resource failures, as

dependencies between application components are reduced. However,

the introduction of loose coupling can impact performance negatively.

For example, data have to be serialized and de-serialized by interacting

application components, even though they may be implemented in

the same programming language, which would allow a more direct

interaction. Therefore, the distributed application (160) pattern also

covers summarizing logical application components into tiers that may

optionally be more tightly integrated for deployment. Components

summarized to such tiers, for example, virtual servers, should have

similar requirements, so that they may be handled similarly during

application management. A central aspect that affects the efficient man-

agement of application components is the workload they experience,

which is considered during this phase of the cloud application design

method.

158



5.2 Pattern-Based Design Method for Cloud Applications

Involved Patterns: static workload (26), periodic workload (29), once-
in-a-lifetime workload (33), unpredictable workload (36), continuously
changing workload (40).

Workload consideration targets the application user groups, which are

characterized by one or more of the workload patterns. A user group

generating static workload (26) accesses the application evenly over

time and does not grow significantly or suddenly. If access behavior

changes over time, any workload change that is very small can still

be considered static. For example, if the application is only accessed

by a few users during the week, the workload can be considered static

even though no accesses occur during the weekend. Periodic work-
load (29) is generated if the access behavior of the user group differs

significantly over time; for example, at the end of every month or once

per year. Once-in-a-lifetime workload (33) is generated if the applica-

tion is used significantly only during a certain event, which can often

be planned in advance. Unpredictable workload (36) is generated by

a user group that can grow or shrink very quickly without any prior

notification; for example, if a mobile application suddenly becomes

popular. Continuously changing workload (40) is generated by a user

group that grows or shrinks consistently over time; for example, if

the application supports a discontinued product that slowly vanishes

from the market. After the behavior of each user group is described

by workload patterns, the workload characteristics may be transferred

to application components accessed by these user groups and further

application components accessed by these components. Subsequently,

the types of workload experienced by each application component can

then be characterized.

In addition to the workload type, the impact of the workload on the ap-

plication component is now considered. With respect to the complexity

involved in processing one request, workload may impact application

159



5 Application of Cloud Computing Patterns

components differently, even though it may be of the same type. For

example, accepting a customer order in the user interface results in

roughly the same processing complexity, regardless of the size of the

placed order. Other application components handling the collection

of ordered items and shipping may face more complex processing for

larger orders. The impact of workload is, thus, characterized for each

component. Those components, which experience similar workload

types and workload impact, are good candidates to be summarized into

tiers; thus, they are deployed and managed as holistic entities. For

example, tiers could be deployed as virtual servers. Instances of these

virtual servers are then added and removed from the application to

manage resource demand and resiliency. Refer to the last phase of the

design method for cloud applications for a detailed discussion.

Related Design Methods: Allspaw [All08] reviews experience from

capacity planning in Yahoo! data centers and those of other companies.

Such experience may be relevant during the considerations of workload

in cloud applications, as well.

Menasce and Almeida [MA01] present methods of capacity planning for

Web services. Therefore, if a SOA is used as the architectural style for

the cloud application, the covered methods may be considered during

the refinement of services to physical tiers.

5.2.3 State
The location where state information is stored significantly affects the

design of the application as well as later management tasks, such as

elasticity and resiliency handling. In this scope, the design method for

cloud applications differentiates between two types of state: session
state and application state. Session state represents the interaction of

160



5.2 Pattern-Based Design Method for Cloud Applications

users and other applications with the state-handling application. This

could be, for example, the shopping cart of a customer interacting with

an online shop. Application state represents the actual data handled

by the application. This could be, for example, the currently processed

orders of the online shop, the customer database, or other lists.

Involved patterns: strict consistency (123), eventual consistency (126),

stateful component (168), stateless component (171).

During this phase, the IT architect specifies which application compo-

nents handle state and which application components rely on other

parts of the application for this purpose. Respectively, application com-

ponents implement the stateful component (168) pattern or the stateless
component (171) pattern. The IDEAL cloud computing properties rec-

ommend the isolation of state during this phase: state should be kept

in a minimal number of application components to ease later man-

agement tasks, such as scaling. If no state has to be synchronized or

extracted upon provisioning or decommissioning of application compo-

nent instances, management tasks become simpler. At best, the state

information should be kept solely in provider-supplied storage offerings.

This strategy is also motivated by cloud provider guidelines [Var10a;

Var08]. Prior to selecting any provider offerings for this purpose, re-

quired data consistency behavior of the application has to be considered.

The patterns of strict consistency (123) and eventual consistency (126)

describe these aspects in detail. Storage offerings that support strict
consistency of data ensure that all accesses following a data update

immediately see this change; thus, these offerings always provide the

most recent version of data upon access operations. In large distributed

environments, this behavior may be difficult to ensure. Network parti-

tioning may occur, reducing the availability of strict consistent storage

offerings, as data replicas cannot be synchronized. Refer to the CAP

theorem [GL02] for a detailed discussion of the interdependence of the

161



5 Application of Cloud Computing Patterns

storage offering properties of consistency, availability, and partitioning

tolerance. Due to these limitations, many cloud storage offerings display

eventual consistency to increase performance, improve availability, and

also reduce the complexity to be handled by the provider, ultimately

leading to reduced offering costs. Some storage offerings, such as Ama-

zon DynamoDB,
30
even charge more for strict consistent accesses to

data.

Therefore, the IT architect has to identify what state information has

to be managed in a strict consistent manner. He must also identify

where eventual consistent behavior is acceptable in favor of availability,

performance, and operating cost. A common example where even-

tual consistent data is acceptable in the business case is the number

of items in stock displayed by an online store. Keeping this number

consistent if the store plans to reach a globally-distributed user group

may be too complex, costly and performance-reducing; thus, customers

are provided approximated information. The data abstractor (194) pat-
tern provides more detail about such data approximations that may be

acceptable with respect to a particular business case.

Related Design Methods: Strauch et al. [SBK+12] describe cloud data

patterns to enable confidentiality in the cloud. These patterns, especially,

support the migration of existing application data to the cloud [SAB13].

Fowler [Fow02] presents additional patterns for server-side state and

client-side state that can be considered during the state design phase.

Furthermore, if the domain model described by Fowler [Fow02] has

been used to decompose the application, the structure of this model can

support the selection of storage offerings after the required consistency

behavior has been specified. Storage offerings can enforce more or

less structure on the stored data. Offerings implementing the relational

30http://aws.amazon.com/dynamodb/

162

http://aws.amazon.com/dynamodb/


5.2 Pattern-Based Design Method for Cloud Applications

database (115) pattern can be used to enforce structural consistency

among data elements. For example, if customers and sales agents are

to be managed, it can be ensured that each customer has an associated

sales agent. Thus, the removal of a sales agent is only allowed if none

of the customer data elements reference the sales agent data element to

be removed.

Other storage offerings, such as a key-value storage (119), enforce less
structural consistency on handled data elements. This complexity then

has to be handled in the application using such storage offerings. How-

ever, storage offerings with fewer structure-enforcing mechanisms may

display a higher performance, lower price, and other favorable char-

acteristics, as they are easier to implement for the cloud provider. For

more information regarding how cloud providers ensure consistency

and, especially, why eventual consistency reduces implementation per-

formance, refer to Tanenbaum and Steen [TS06]. Furthermore, offerings

enforcing less structural consistency can handle subsequent changes to

the data structure more easily.

Therefore, the use case supported by the domain model may be an

indicator for a suitable cloud storage offering. A domain model with

many interdependencies among described data elements may be more

suitable for a relational database, as the structural consistency of these

interdependencies can be enforced by the storage offering and does

not have to be handled by the application. If the domain model shows

few such interdependencies and, especially, if the domain model may

change at a later point in time, the use of storage offerings enforcing

less structural consistency of data, such as a key-value storage (119), may

be more fitting. Refer to the key-value storage (119) and the relational
database (115) patterns for more details on the context in which these

offerings should be used.

163



5 Application of Cloud Computing Patterns

Codd [Cod70] provides more information on the design of data struc-

tures that can be handled by relational databases. Silberschatz, Korth,

and Sudarshan [SKS10] and Elmasri and Navathe [EN10] add more

detail on this topic and also cover queries to the storage offering in

greater detail. Storage offerings enforcing less structural consistency

on the handled data are often summarized as NoSQL storage in the

literature: Tiwari [Tiw11] provides an overview of involved concepts

and current implementations. More details on such storage offerings,

the underlying concepts, and differences in their implementations are

provided by Sadalage and Fowler [SF12].

Transactions are atomic operations on data elements that may be kept

in distributed storage offerings. This concept is relevant during the

design of applications if concurrent read and write accesses are exe-

cuted on the storage offerings. Tanenbaum and Steen [TS06] cover

basics of such transactional data processing. More information about

how to build transactional applications can be obtained from Gray and

Reuter [GR93].

5.2.4 Component Refinement
The components into which the application has been decomposed each

handle different application functionalities. For their realization, addi-

tional patterns to be implemented by these components are identified

based on the provided function. Thus, the functional purpose and behav-

ior of the components is refined further. In addition to the application

functionality subsuming user interfaces, processing, and data handling,

functionality may be required to enable the interaction among the appli-

cation components, thus integrating them to form a single application

after their decomposition. During this integration, performance has

164



5.2 Pattern-Based Design Method for Cloud Applications

to be weighted against loose coupling to ensure resiliency, simplify

management tasks, and ease later adaptation.

Involved Patterns: message-oriented middleware (136), user inter-
face component (175), processing component (180), data access compo-
nent (188), data abstractor (194).

The functional components into which the application has been decom-

posed are categorized by their main purpose: user interfaces, process-

ing, or data access, described by the respective patterns. During this

mapping, application components described during the decomposition

phase may be split into finer granular components to separate different

functionalities offered by them. In this case, the workload and data con-

siderations for the split-up application component have to be performed

again for the newly-created components. To ensure the loose coupling
cloud application property among the application components as de-

scribed by the loose coupling (156) pattern, their interaction has to be

realized in a way that reduces the dependencies among the application

components. The desired degrees of autonomy among components de-

scribed by the loose coupling pattern are: platform autonomy, in which

application components may be implemented in different programming

languages running in different execution environments; reference au-

tonomy, in which application components are unaware of the physical

and logical address of other application components; time autonomy,

in which application components may exchange information at dif-

ferent speeds and times; and format autonomy, in which application

components may send and receive diversely-formatted data.

A common means to ensure these degrees of autonomy is to com-

municate asynchronously through an intermediary, which interfaces

with different programming languages (platform autonomy), routes

requests among communication partners (reference autonomy), stores

165



5 Application of Cloud Computing Patterns

and forwards messages (time autonomy), and handles data format trans-

lation (format autonomy). This functionality is provided by a message-
oriented middleware (136) that enables applications and application

components to exchange asynchronous messages managed in queues

asynchronously.

However, loose coupling can come at the expense of performance. In

particular, data transformation to and from the message format and

transport over a network may add to the overhead. Therefore, some

components may again be summarized to tiers as described by the dis-
tributed application (160) pattern. Commonly, the benefits introduced

by messaging regarding the resiliency and flexibility of later changes

to the application can be treated as more important than the possibly

anticipated performance impact. In many cases, messaging has proven

a better fit than remote procedure call (RPC) style integration [HW03].

Cloud providers also strongly motivate the use of messaging in applica-

tions [Var10a; Var10b; Var08; MM15].

Related Design Methods: Hohpe and Woolf [HW03] provide a pat-

tern language for message-based applications that should be consid-

ered for the integration of application components, as well as for the

integration of the cloud application with other existing applications.

The Yahoo! design pattern library
31
contains user interaction patterns,

which describe in detail the design of application interfaces to be used

by humans. If the implementation of the application components fol-

lows an object-oriented design, the patterns of Gamma, Helm, and

Johnson [GHJ94] as well as those of Buschmann et al. [BMR+96] can

be considered as guidelines for their design and development.

31http://developer.yahoo.com/ypatterns

166

http://developer.yahoo.com/ypatterns


5.2 Pattern-Based Design Method for Cloud Applications

5.2.5 Elasticity and Resiliency
During the runtime of a cloud application, the experienced workload

may change as characterized during the workload phase of the cloud

application design method. Therefore, the IT resources required by

the application to handle this workload may also vary over time. With

respect to the often used pay-per-use pricing models of cloud offerings,

this number of resources should be adjusted during runtime. However,

such an elastic increase and decrease of IT resource numbers demands

that the application may be able to cope with their addition and removal.

Furthermore, the monitoring of resource demand and the adaptation of

resource numbers should be automated in order to exploit pay-per-use

pricing models most effectively. However, resource removal may not

only occur intentionally as part of elastic scaling. Resource failures may

also lead to sudden and unplanned resource unavailability with which

the application should be able to cope, as well.

Involved Patterns: node-based availability (95), environment-based
availability (98), batch processing component (185), multi-component
image (206), elasticity manager (250), elastic load balancer (254), elastic
queue (257), watchdog (260).

During the elasticity and resiliency phase, additional application compo-

nents are added to the cloud application that do not provide application

functionality, but handle the automatic management of the application

during runtime. This phase covers the two management tasks that

most cloud applications will have to address during runtime: the elastic

scaling of used resource numbers and the resiliency with respect to

resource failures.

How elasticity is handled mainly depends on the means for monitoring

the workload experienced by the application. Based on this workload,

167



5 Application of Cloud Computing Patterns

the capabilities of the application are then adjusted by provisioning

or decommissioning application component instances. The applica-

tion should, therefore, be scaled out instead of being scaled up. Refer

to [FLR+14] for a detailed discussion of both approaches and their

feasibility.

The elasticity manager (250) scales an application based on the moni-

tored utilization of resources used by the application. This can be, for

example, the CPU load on a virtual service, disk usage, or network

traffic. The elastic load balancer (254) scales an application based on

synchronous accesses to the application; for example, to the Web-based

user interface. The elastic queue (257) pattern describes how the num-

ber of messages in messaging queues can be monitored in order to

determine the number of required resources. Elasticity based on such

asynchronous communication also is beneficial to other approaches,

as the workload does not have to be handled immediately when it oc-

curs: messages can be stored in the queue for some time until their

processing is feasible. Therefore, elasticity handling based on the elastic
queue (257) pattern can provision and decommission resources more

flexibly. Resources may even be provisioned only during certain time

frames when processing is most feasible; for example, overnight or on

weekends. The batch processing component (185) pattern describes such

delay of non-time-critical workloads in greater detail.

Additional considerations for elasticity management may be necessary

to respect the particular properties of the environment. Many cloud

providers give no assurances regarding the time that will be required

to provision new resources, and in private clouds (66), the number of

available resources may be limited. The multi-component image (206)
pattern describes how multiple application components can be sup-

ported by a single resource provided by the cloud; for example, one

virtual server. Such instances may then be used for various purposes

168



5.2 Pattern-Based Design Method for Cloud Applications

by the application; for example, virtual servers hosting user interface
components (175) and batch processing components (185) can be reas-

signed to handle processing tasks when few users access the application.

Similarly, the instances can be quickly reassigned to handle user in-

put during times of peak workload. All of this occurs without the

need to actually provision or decommission the resources at the cloud

provider.

The watchdog (260) pattern covers how the availability of application

components can be monitored in order to detect and replace faulty

instances. Similar to the elasticity management components, monitor-

ing can be performed on various information sources that should be

consolidated: cloud providers may offer “health” information about

the IT resources used by an application; for example, the reachability

of virtual servers over a network. Additional application-level checks

should also be realized to ensure that an application component hosted

on such a resource is actually available. Means for such checks include

periodic heartbeat messages of application components and periodic

requests initiated by the watchdog to verify application functionality.

An important factor to consider for resiliency management is the avail-

ability assured by cloud providers. According to the patterns node-based
availability (95) and environment-based availability (98), two provider

assurances can be differentiated. Node-based availability assures the

correct functioning and accessibility of a resource for a certain percent-

age of the time period the resource is provisioned. For example, it can be

assured that a resource is available 99.95% of each month during which

it is provisioned. Environment-based availability relaxes this assurance

and only guarantees that new resources can be provisioned, i.e., self-

service interfaces of the environment are functioning and accessible.

Often, this assurance is combined with a guarantee that a subset of

provisioned resources is available; therefore, the provider-interface may

169



5 Application of Cloud Computing Patterns

even be unavailable, as long as some of the provisioned resources are

available. For example, virtual servers at the cloud provider Amazon are

assured to have an availability of 99.95%. The service level agreement

of Amazon EC2
32

defines “available” as follows: at least one of the

virtual servers provisioned in at least two redundant hosting environ-

ments – so-called availability zones – is functioning and accessible, or

the environment allows the user to provision new servers. To comply

with this service level agreement, the cloud application properties of

distribution, elasticity, and automated management are required. The
cloud application has to use multiple resources (distribution). These

resources have to be redundant, i.e., the application is scaled out (elas-

ticity). Also, the application has to cope with resource failures at any

time by provisioning replacements (automated management).

Related Design Methods: Scalability of applications is not a cloud-

specific topic. The cloud only makes it easy and profitable to adjust

resource numbers automatically and quickly in order to exploit pay-

per-use pricing models. A general introduction to scalability is pro-

vided by Abbott and Fisher [AF09] covering many real-world use cases.

Menasce and Almeida [MA01] also cover means for capacity planning.

In particular, it is discussed how the optimal hardware configuration

of servers on which an application is deployed can be measured to

determine optimal configurations. With respect to fault-tolerance, Han-

mer [Han07] covers patterns for this domain. Recent cloud versions

of these patterns [Han14] have also been integrated with the cloud

computing patterns presented in Section 4.4. Breitenbücher, Binz, and

Leymann [BBL14] describe an approach to automate management pro-

cesses using patterns. This approach can be based on partially auto-

mated tasks that are combined into management processes automati-

cally [BBKL14].

32http://aws.amazon.com/ec2/sla/

170

http://aws.amazon.com/ec2/sla/


5.3 Chapter Summary

5.3 Chapter Summary
This chapter has discussed the application of the cloud computing pat-

terns. These patterns are made accessible with respect to the entity of

the cloud reference application (see Section 3.3) they help to build. An

IT architect may determine a set of applicable patterns based on their

mapping to the reference application. The pattern-based application

design is furthermore supported by a design method. This method

guides IT architects during the design process by describing the decom-

posing application functionality, considering the experienced workload,

planning how data is managed, refining components using additional

patterns, and finally, enabling elasticity and resiliency.

171





CHAPTER6

Toolchain for Cloud Computing Patterns

The toolchain presented in this chapter supports the complete pattern

engineering process introduced in Section 1.3. The presented tools

have been designed with configurability in mind. Thus, they may be

adapted to other domains than cloud computing to support pattern

research in these domains, as well. For example, such adaptations

have been feasible for green business process patterns [Now14], which

help to reduce the environmental impact of business processes. Due

to the iterative nature of the pattern engineering process and the level

of uncertainty at the beginning of pattern research in a new domain,

the presented tools leave a high degree of freedom during the initial

phases of the pattern engineering process. For example, this ensures

173



6 Toolchain for Cloud Computing Patterns

IDE

Figure 6.1 – Overview of the toolchain supporting the cloud computing
patterns

that pattern researchers may easily adapt the pattern format or the

graphical elements used in the domain. During subsequent iterations

as these aspects of the domain become better known, the presented

tools can be used to enforce a particular pattern format, reference types

among patterns, and other features.

An overview of the toolchain and the supported phases of the pattern

engineering process is given in Fig. 6.1. The individual tools and their

subcomponents will be detailed in the following. A complete detailed

view of the toolchain with all of its subcomponents is provided in Ap-

pendix C. The pattern identification phase is supported by a pattern

authoring toolkit (Section 6.1) comprising several document templates

to handle the following tasks. First, to collect, organize, and analyze

information sources of the domain. Second, to draft pattern documents

using a pattern document template and a stencil set for the employed

graphical elements. The pattern authoring phase is further supported

by a pattern importer (Section 6.2) that can be used to move from a

174



6.1 Pattern Authoring Toolkit

set of created pattern drafts and, possibly, existing patterns toward a

pattern repository. This pattern repository (Section 6.3) is wiki-based,

thus enabling the collaborative editing and interconnecting of pattern

documents in a larger author group. It also supports the pattern user by

recommendation of applicable patterns in the use case at hand. Finally,

a reference implementation repository (Section 6.4) can be integrated

with the pattern repository. This is commonly used in corporate set-

tings, where pattern use and, thus, the created IT applications should

be standardized in order to reduce the IT management effort and in-

crease development speed. The following sections cover these four

main components of the toolchain that support the pattern engineering

process. The corresponding subsections each provide a detailed look at

the respective components shown in Fig. 6.1.

6.1 Pattern Authoring Toolkit
The pattern authoring toolkit

33
supports the manual collection of in-

formation sources and their analysis for recurring concepts, which

may then be abstracted into patterns. The work conducted using these

templates is considered to be undertaken in small groups of pattern

researchers, which collaborate according to the pattern authoring guide-

lines covered in Section 2.1, such as during shepherding iterations and

writers’ workshops. The pattern authoring toolkit is comprised of the

following files, as shown in Fig. 6.2.

33http://cloudcomputingpatterns.org/authoringtoolkit.zip

175

http://cloudcomputingpatterns.org/authoringtoolkit.zip


6 Toolchain for Cloud Computing Patterns

Figure 6.2 – Detailed view of the pattern authoring toolkit

6.1.1 Information Classification Template

Patterns are not invented, but are rather identified in existing solutions.

Therefore, the pattern authors have to support the created pattern with

information about these existing solutions. Furthermore, recurring

solution concepts that the pattern authors are unaware of should be

identified in a set of domain documents, such as research papers, indus-

try white papers, online resources, and other information sources. The

176



6.1 Pattern Authoring Toolkit

information classification template in the form of a Microsoft Excel tem-

plate guides the process to collect information sources, classify them,

and abstract common concepts. In the scope of the cloud computing

patterns, documentation about cloud provider offerings, existing cloud

applications, and architecture guidelines of cloud providers has been

captured in this template according to the following steps.

1. The relevant cloud providers to be analyzed were identified. Then,

documentation and architecture guidelines were collected in the

information classification template.

2. The information sources were classified with respect to (i) the

type of offering they provide to the cloud reference application

(see Section 3.3), and (ii) the architectural challenge addressed

in the documents, i.e., availability, resiliency, pay-per-use pric-

ing models, tenant-isolation, etc. It should be noted that each

document could potentially be assigned multiple classifications.

3. The content of information sources was abstracted into provider-

independent summaries. These summaries are general statements

about the covered architectural principles, the type of described

offering, and other considerations. For example, some statements

abstracted from information sources were: “Multiple instances

of application components have to be used in order to increase

availability.”; “Messaging should be used to exchange information

among components.”; and “Storage offerings can provide access

to managed files similar to a local file system.” These provider-

independent abstractions were found in multiple information

sources that had been classified similarly prior to the abstraction.

Iteratively, the grouping of information sources was, therefore,

increased with respect to their classification and abstract content.

177



6 Toolchain for Cloud Computing Patterns

By following these steps, information sources were collected, catego-

rized and abstracted. Abstractions identified in multiple information

sources formed the basis for drafting pattern documents, as supported

by the following files of the pattern authoring toolkit.

6.1.2 Pattern Document Template and Stencil Set
AMicrosoft Word template has been created in adherence to the pattern

document sections specified by the pattern metamodel covered in Sec-

tion 4.2. Thus, the pattern document template enforces this document

structure on all drafted patterns supported by the created information

classification and abstraction. This initial set of cloud computing pat-

terns has been published [FLMS11; FLR+11; FEL+12] to be discussed in

a larger research community, especially using shepherding and writers’

workshops (see Section 2.1). Additional homogenization of the created

pattern documents was ensured by using a set of graphical elements (see

Section 4.3.2). This graphical elements stencil set is provided as multiple

portable network graphics (PNG) files. In addition to the composition

guidelines covered in Section 4.3.3, this stencil set ensures a common

look and feel for the pattern icons and graphical solution sketches,

thus increasing the perceptibility of pattern documents through format

homogenization [Pet95].

After their initial draft as a technical report [FLMS11], the cloud

computing patterns were shepherded and discussed during writers’

workshops [FLR+11] and were presented to the cloud computing re-

search community [FEL+12]. A dedicated three-day writers’ work-

shop was held during the Chili PLoP conference in 2012
34
prior to the

34http://hillside.net/chiliplop/2012/

178

http://hillside.net/chiliplop/2012/


6.2 Pattern Importer

eventual publication of the final version of the cloud computing pat-

terns [FLR+14]. Following this publication of the patterns as a book,

they were made accessible in a collaborative online tool. This enabled

feedback to be obtained from a large group of pattern users and made

the cloud computing patterns more easily accessible. A wiki was se-

lected as the collaboration platform for this purpose. Prior to covering

this wiki-based pattern repository in Section 6.3, the following sections

address the import of existing pattern documents that were created

using the pattern document template or by other means.

6.2 Pattern Importer
Patterns created using the pattern authoring toolkit are in a Microsoft

Word document format. Other patterns of cloud computing or other

domains may be available in other formats, such as research papers,

books, or websites. In order to import such diverse formats into a

wiki-based pattern repository, an import format has been defined in

accordance with the pattern metamodel (see Section 4.2), which may

then be converted into a format that can be imported into the wiki.

The following components comprising the pattern import are shown in

Fig. 6.3

6.2.1 Pattern Import Format Editor
The import format was specified in accordance to the patternmetamodel

(Section 4.2) to ensure the following four properties.

1. The pattern import format should be human-readable, because

manual work may be involved in its creation. Only some existing

179



6 Toolchain for Cloud Computing Patterns

Figure 6.3 – Detailed view of the pattern importer

patterns are available in a machine-processable form; for exam-

ple, hypertext markup language (HTML). In this case, certain

elements of the existing format, for example, headings, could be

identified and automatically transformed into the correspond-

ing sections of the pattern metamodel. When patterns were

extracted from research papers, books, and other sources not

intended for automated processing, some manual work was re-

quired, especially if licensing of the original content required

180



6.2 Pattern Importer

an abbreviation or alteration prior to making the content avail-

able in a Web-accessible pattern repository. This was the case

for the cloud computing patterns, where only 10% of the book’s

content [FLR+14] was allowed to be made accessible online.

2. The pattern import format should be generated easily from exist-

ing sources that were available in a machine-readable form.

3. The conformity of created import data to the pattern metamodel

should be ensured as early as possible, i.e., during the manual

generation, and should not be delayed to the import into the

pattern repository.

4. Existing editors and format validation should be preferred over

the creation of custom validation functionality. This ensures that

the resulting toolchain can be more easily adapted to a changing

pattern metamodel in other domains, as existing tools have to

be reconfigured instead of re-implementing or adjusting custom

tools.

The Extensible Markup Language was chosen for the pattern import

format as it fulfills the abovementioned requirements. An XML-Schema

has been created [FL14] that ensures conformity to most aspects of the

patternmetamodel (Section 4.2). Using this schema, any XML Editor can

be used to create the pattern import format. For the cloud computing

patterns, the open source integrated development environment (IDE)

Eclipse
35

has been used. The additional OCL constraints covered in

Section 4.2.2 could not be ensured using the standard capabilities of

XML editors. Instead, these constraints are ensured using additional

validations handled during the conversion of the pattern import format

35http://www.eclipse.org

181

http://www.eclipse.org


6 Toolchain for Cloud Computing Patterns

into the data format used by the wiki-based pattern repository. This

conversion is covered in the following section.

6.2.2 Pattern Import Format Converter
The XML-based pattern import file is converted into wiki-markup,

36

which is supported by the used wiki software, MediaWiki
37
. The pattern

metamodel elements were mapped to MediaWiki elements. Pattern

documents are persisted as wiki articles. Sections of the pattern docu-

ments correspond to sections in these articles. Categories of pattern

documents are also supported by MediaWiki as categorizations of wiki

articles. References among pattern documents are persisted using the

semantic properties of the wiki article linking to the corresponding wiki

article. To enable such semantic properties, the MediaWiki extension

Semantic MediaWiki
38
was used.

The conversion is implemented as a Ruby
39
script, which generates the

wiki-markup based on the pattern import file. Additionally, this input

format converter also generates layout configuration files based on the

pattern sections and the employed categories. This is a generalization in

support of different pattern languages. If patterns in other domains do

not use icons, driving questions, or other parts of the pattern document

format presented in Section 4.1, the corresponding layout element is not

generated by the converter. If more sections are used or the sections of

the pattern document are named differently, the output of the converter

is also adjusted accordingly. The same is the case if the reference types

36http://www.mediawiki.org/wiki/Markup_spec
37http://www.mediawiki.org/
38http://semantic-mediawiki.org/
39http://www.ruby-lang.org/

182

http://www.mediawiki.org/wiki/Markup_spec
http://www.mediawiki.org/
http://semantic-mediawiki.org/
http://www.ruby-lang.org/


6.3 Pattern Repository

among pattern documents are named differently. The converter uses

these references to create semantic links among wiki articles. These link

types can then be used to query the pattern repository; for example,

to find all alternatives to a certain pattern. The collaborative wiki-

based pattern repository, its internal data structure, and its querying

capabilities based on semantic links among contained pattern articles

are covered in the following section.

6.3 Pattern Repository
Following the manual creation of pattern documents, a collaborative

online tool makes patterns easily accessible and editable in a collabora-

tive fashion. The resulting pattern repository is depicted in Fig. 6.4. To

enable online editing and accessibility in a large pattern research group,

a wiki was selected as the collaboration platform. Wikis have been

employed extensively for the purpose of organizing patterns [LC01;

HHA11; Now14]. In this work, MediaWiki was chosen as it supports

WikiPedia,
40

most likely the largest wiki project and as it provides

advanced semantic extensions: Semantic MediaWiki
41
. This extension

enables typed references among pattern documents in the form of se-

mantic properties that can be queried. The following sections cover

the data structure used by this wiki to support the pattern metamodel.

Furthermore, the query capability of the semantic extensions to increase

accessibility of the cloud computing patterns is described.

40http://www.wikipedia.org/
41http://semantic-mediawiki.org/

183

http://www.wikipedia.org/
http://semantic-mediawiki.org/


6 Toolchain for Cloud Computing Patterns

IDE

Figure 6.4 – Detailed view of the pattern repository

6.3.1 Pattern Document Database

Each pattern document is imported into the pattern repository as a wiki

article. The structure of this wiki article was in conformance to the pat-

tern metamodel as ensured by the import format converter. Conformity

during later editing of such wiki articles is covered in Section 6.3.4. Ref-

erences among pattern documents took the form of typed links enabled

by the Semantic MediaWiki extension, which implements the resource

184



6.3 Pattern Repository

description framework (RDF) standard
42
. Therefore, typed links are

called “semantic properties” as in other semantic tools [AH11]. They en-

able the definition of properties for each wiki article, which may either

have a data value or point to other wiki articles. For example, a wiki ar-

ticle about Amazon Web Services (AWS) may have a semantic property

“Web address”, which points to the value “http://aws.amazon.com”,

and another property “launched”, which points to the value “2006”. In

the scope of pattern documents, these properties have been used to

introduce typed references among patterns; for example, to express

alternatives or an order of consideration (see Section 4.2 covering the

reference types of the pattern metamodel). These semantic properties

can be queried for each pattern document contained in the pattern

repository; for example, to find alternatives for a pattern or to find

all patterns that should be considered after a certain pattern. These

queries are used to visualize references among patterns in the pattern

browser and for pattern recommendation functionality, both covered

in the following.

6.3.2 Pattern Browser
The pattern documents are visualized as wiki articles. A screenshot

of the public cloud (62) pattern in the pattern browser is visible in the

screenshot in Fig. 6.5. The layout specification is handled by a wiki

article template that is generated by the pattern import format converter.

It follows the reading layout of the cloud computing patterns introduced

in Section 4.3.1. Additionally, alongside each pattern article, a references

box is shown that summarizes all relations of the displayed pattern to

other pattern documents. Internally, this references box is automatically

42http://www.w3.org/RDF/

185

http://aws.amazon.com
http://www.w3.org/RDF/


6 Toolchain for Cloud Computing Patterns

Figure 6.5 – Screenshot of the pattern browser

generated by querying the semantic links among pattern documents.

If links of a certain type can be found, the section corresponding to

this links type in the references box lists the connected patterns. For

example, to obtain the list of all patterns that should be considered after

the public cloud (62) pattern, the following query can be used.

{{ #ask: [[ConsiderNext::Public Cloud]] }}

Listing 6.1 – Query to obtain patterns to be considered after the publiccloud pattern
Therefore, the references box is filled by querying the typed links of

the currently-displayed pattern document. Also, these querying ca-

pabilities have been used by the following pattern recommendation

functionality.

186



6.3 Pattern Repository

Figure 6.6 – Screenshot of the pattern recommender

6.3.3 Pattern Recommender
The accessibility of the cloud computing patterns is covered in Sec-

tion 5.1 and is supported by the pattern recommendation functionality

using the cloud reference application as the entry point. Similar rec-

ommendation tools for patterns have also been used in the domain of

green business process management [Now14] and in the domain of data

migration [SAB+13a]. A semantic form is used to acquire input from

the pattern user about which component of the reference application

is relevant to him, as shown in Fig. 6.6. Additionally, he may specify

a set of patterns that have already been identified as relevant in the

use case at hand. Given this specification, a set of relevant patterns is

recommended to the user through their correlation to the cloud refer-

ence application and their relation to the user-specified patterns. By

187



6 Toolchain for Cloud Computing Patterns

default, only the ConsiderAfter link is evaluated, but the user may

also specify other reference types that should be considered to find

relevant patterns. Additional patterns that are referenced from the set

of relevant patterns are queried: First, all patterns with incoming links

from the set of relevant patterns are queried. Second, the set of links

connecting these patterns with the relevant pattern set are queried.

Finally, the list of user-specified patterns is ordered with respect to the

number of links they have to the set of relevant patterns and presented

to the user in descending order.

6.3.4 Pattern Editor
The pattern repository should also provide functionality to create new

patterns after the initial import. Also, imported patterns should be

editable to be refined and adjusted. The pattern format specified by the

pattern metamodel is enforced within the pattern repository by editing

pattern documents using the semantic form shown in Fig. 6.7. While

this functionality is similar to using document templates of the pattern

authoring toolkit in order to edit pattern documents, the references

among pattern documents were used to simplify the pattern revision.

Part of the pattern language revision phase of the pattern engineering

process covered in Section 1.3 is the identification of references among

patterns that are not bidirectional. If a pattern is, for example, an

alternative to another pattern, the same is the case in the opposite

direction. However, simply treating all references of a certain type

among patterns as bidirectional is inefficient, as supporting explanatory

text related to why a reference existed between two patterns had only

been written in a single pattern document. Also, some reference types,

such as ConsiderNext, are not bidirectional. Therefore, the pattern

editor only suggests patterns that reference the currently-edited pattern

188



6.4 Reference Implementation Repository

Figure 6.7 – Screenshot of the pattern editor

so that the pattern author could possibly add them to the currently-

edited pattern.

6.4 Reference Implementation Repository
The pattern engineering process describes the use of reference imple-

mentations as part of the pattern application phase (detailed in the

introduction to Chapter 5). This standardization of created implementa-

tions given a set of patterns is often used in corporate settings, where

each pattern implementation uses a common IT infrastructure stack.

Standardization of the IT stack is a common goal, as managing various

combinations of operating systems, middleware, and other hard- and

software forming custom IT stacks is a significant cost driver for IT

189



6 Toolchain for Cloud Computing Patterns

departments [DKPM07]. Also, development time may be reduced if

developers can rely on existing code templates. Setup and management

of the homogenized IT stacks can also be handled by IT departments,

reducing the effort for the developer. The toolchain supporting the

cloud computing patterns, therefore, incorporates standard tools to

manage such reference implementations of cloud computing patterns

that can be referenced from pattern documents in order to support their

implementation and standardize the solutions created by pattern users.

The resulting reference implementation repository is depicted in Fig. 6.8.

Reference implementations are customized to each corporate setting:

refer to Section 7.1.1 for an industry use case of the tools presented

here.

In general, the toolchain supporting the cloud computing pattern im-

plementation relies on standard tools for code management and devel-

opment as much as possible ,to simplify the integration with existing

development tools and existing development processes. Therefore, the

tools comprising the reference implementation repository are existing

open source software. Maven
43
was selected as the central code reposi-

tory to contain and organize the reference implementations. A front-end

and management system for this repository, Artifactory,
44
was used to

interface with existing integrated development environments (IDE) of

developers.

6.5 Chapter Summary
The presented toolchain supports all phases of the pattern engineering

process introduced in Section 1.3. The pattern authoring toolkit sup-

43http://maven.apache.org/
44

http://www.jfrog.com/artifactory/

190

http://maven.apache.org/


6.5 Chapter Summary

IDE

Figure 6.8 – Detailed view of the reference implementation repository

ports collecting relevant information sources for the identification of

patterns, their classification, and abstraction into common concepts.

The wiki-based pattern repository can be used for existing patterns

using an importer that employs an XML import format, which can be

generated or created manually. The pattern repository enables brows-

ing and editing patterns. Patterns may also be recommended to pattern

users based on the entity of the cloud reference application they de-

scribe and a provided set of previously-identified patterns. Reference

191



6 Toolchain for Cloud Computing Patterns

implementations can be used in a corporate setting to standardize the

implementations of patterns in order to make created applications more

manageable and reduce development time.

192



CHAPTER7

Validation

The user group for cloud computing patterns is comprised of IT archi-

tects, developers, students, as well as lecturers (university and continu-

ing education). As the usability and applicability of the cloud computing

patterns manifests in the experience of these user groups, a question-

naire could have been used in the present work to validate the cloud

computing patterns. However, the user group to be analyzed using

this questionnaire remains rather small, because the cloud computing

patterns are still new and have not been adopted by a very large number

of individuals. Therefore, a questionnaire would not have been able

to provide significant evidence. For such small groups, all members of

the group would have to be questioned: Kasunic [Kas05] suggests this

193



7 Validation

complete coverage of investigated groups for group sizes smaller than

800 persons. Therefore, two other validation activities are employed:

(i) action research [Wie14] in industry settings and (ii) an investigation

of use of the cloud computing patterns in research and industry that is

uninfluenced by any of the authors of [FLR+14].

7.1 Use of Cloud Computing Patterns by IndustryPartners
Action research [Wie14] can be applied as a validation technique in

domains where statistical validation using a test group and a control

group is infeasible. It is often used in education, where a new teaching

method is communicated to teachers and then followed for a well-

defined duration, i.e., for a specified number of lectures. Subsequently,

feedback is collected from the teachers and reflected upon to identify

deficiencies in the method. The use cases with industry partners have

been conducted in this fashion: industry partners have been given an

introduction to the cloud computing patterns and have had access to the

book [FLR+14]. Afterwards, the industry partners developed solutions

to their architectural problems at hand. Periodic meetings were held

to collect information about the applicability of the cloud computing

patterns.

7.1.1 Daimler TSS GmbH
Daimler TSS

45
considered the cloud computing patterns and the de-

sign method for cloud applications to create a vehicle telematics plat-

45http://www.daimler-tss.de/

194

http://www.daimler-tss.de/


7.1 Use of Cloud Computing Patterns by Industry Partners

form [Hil14]. This platform serves as a runtime environment for appli-

cations that access telematics services; for example, to remotely view

the status of a car, control some of its functions, or track its location. Use

cases are, for example, applications that help users to manage service

appointments in car shops, control their heating systems remotely, or

restrict the movement of their car with respect to speed and location

after handing it over to a valet parking service. The number of use

cases is still undetermined; therefore, a platform should be created that

makes vehicle telematics services accessible and serves as a runtime

environment for rapidly-developed application prototypes.

The pattern-based design method for cloud applications (see Section 5.2)

was followed as part of a larger requirements identification and archi-

tecture design process specified by Eeles and Cripps [EC09]. Figure 7.1

shows the architecture of the platform that was developed.

During the decomposition phase, the following platform services re-

quired by hosted applications were identified. The identity and access
service handles user authentication and authorization. The service repos-
itory manages the set of available services, which can be those services

of the platform or services offered by applications running on the plat-

form. The virtual vehicle service provides an interface to cars, making

them accessible through the platform. The user profile service contains
additional information about each platform user that is not managed by

the identity and access service. The billing service handles metering of

platform use and respective billing to customers. The communication

service offers interaction channels to users, such as e-mail and text

message functionality.

The platform experiences unpredictable workload (36), as the behavior

of users and other applications interfacing with applications running

195



7 Validation

ID

ID

Database
Key-value

Key-value

*

*

Figure 7.1 – Architecture of the telematics platform (adapted from [Hil14])

196



7.1 Use of Cloud Computing Patterns by Industry Partners

on the platform was unforeseeable during the workload phase of the

design process.

During the state design phase, the data handled by the decomposed

services was characterized regarding the necessary consistency behav-

ior and the type of storage offering used, as seen in the annotations

of the patterns key-value storage (119), relational database (115), strict
consistency (123), and eventual consistency (126) to the data elements ac-

cessed by the respective services. The data of the virtual vehicle service

was separated to be handled in different storage offerings displaying

different consistency behaviors. Static vehicle data, which changes

seldom or never, such as production date or service intervals, are han-

dled by an eventual consistent key-value storage. Dynamic vehicle data,

which changes more often, such as door lock status or GPS location, are

stored in a separate key-value storage. For this dynamic data, different

consistency behavior is supported for each data entry: the door lock

status, for example, is realized in a strictly consistent manner, while

the GPS location may be obsolete due to signal unavailability; thus, it

is provided eventually consistent.

During the component refinement phase, the two-tier cloud applica-
tion (290) pattern was identified to be generally implemented by the

services. Since most services only handle data access and non-compute-

intensive processing, a separation of the user interface and processing

functionality into separate tiers, as described by the three-tier cloud ap-
plication (294) pattern, was not used. Most of the services, therefore, im-

plement the processing component (180) and data access component (188)
pattern. Exceptions are the communication service used to integrate

external services for e-mail and text message communication into the

platform, thus using the provider adapter (243) pattern.

197



7 Validation

During the elasticity and resiliency phase, the elastic load balancer (254)
pattern was selected to distribute the workload among service instances.

The watchdog (260) pattern, which is used to enable resiliency, is not

shown in Fig. 7.1 due to space limitations. It is implemented by the

elastic platform (91), on which the services are hosted to ensure avail-

ability. The elastic platform is also not depicted in Fig. 7.1 due to space

limitations.

Custom applications may now be developed based on this platform.

The development should be sped up by the creation of an application

template and its guided configuration and refinement for each given use

case. Therefore, a composition of the cloud computing patterns to form

a template was defined, and a customizable reference implementation

was created to support any future developments of applications. Fig. 7.2

depicts the resulting architecture of the application template. It was

created by following the same design process governing the creation of

the platform itself.

As the workload type depends on the hosted application and its users,

the application template should be able to handle unpredictable work-
load (36). In order to cope with different workload types, the func-

tionality of the application template was decomposed into application

components as described by the three-tier cloud application (294) pattern.
As an adjustment, the message-based interaction among the process-

ing tier and data handling tier was omitted to simplify the template

structure. Its reintroduction was kept as a guideline for very large

applications. The tiers of the template were designed as stateless com-
ponents (171), as suggested by the three-tier cloud application pattern.

Data is handled in a relational database (115), but other storage offer-
ings were planned to be supported in the future. The three-tier cloud
application pattern also governs elasticity behavior, which the template

foresees to be based on synchronous accesses to the user interface and

198



7.1 Use of Cloud Computing Patterns by Industry Partners

Unpredictable
Workload

Stateless
Component

User Interface
Component

Message-oriented
Middleware

Processing
Component

Stateless
Component

Data Access
Component Database

Infrastructure
as a Service

Private 
Cloud Infrastructure

Figure 7.2 – Architecture of the telematics application template (adapted
from [Cha14])

messages for the processing tier. As an elastic infrastructure (87) is

used for hosting the application, it is scaled by adjusting the number

of virtual servers. Resiliency is realized using the functionality of this

infrastructure, which monitors the availability of the virtual servers.

A reference implementation for the template was created based on

Java46 and was managed using Apache Maven,47 as described by the

tooling architecture in Section 6.4. Variability of this reference imple-

mentation was captured using the CAFE Variability Model [Mie10].

Custom adjustments to Maven enabled the interpretation of these mod-

els to configure the application template for a developed application, as

well as its automatic deployment [Sch13] [Cha14].

46http://www.java.com/
47http://maven.apache.org/

199

http://www.java.com/
http://maven.apache.org/


7 Validation

7.1.2 Dr. Ing. h.c. F. Porsche AG
Dr. Ing. h.c. F. Porsche AG

48
used the cloud computing patterns for

reengineering an information integration system, which provides

generic access to multiple information sources. This system is used

primarily during the development of new cars for the management

and analysis of data gathered during the testing of new cars using

physics simulations, prototyping, or physical tests. In contrast to

other business intelligence systems and data warehouses maintain-

ing historical data, the aim of this information integration system is to

provide access and generic analysis capabilities to live data managed

in various databases, each maintained by various departments of the

Dr. Ing. h.c. F. Porsche AG. This system has been growing historically

and should be analyzed and optimized to increase performance for its

growing user group. The design process for cloud applications was

followed in an adapted form for this existing application.

Instead of decomposing application functionality, as a first step, the ex-

isting application components comprising the information integration

system were identified in the existing system to describe a componen-

tized system architecture. The resulting abstract architecture is shown

in Fig. 7.3. The information integration system supports a desktop client

and a Web client. Both can be used to generate queries to integrated

data based on a custom query language. This query language is based

on a common data model and simplifies queries across various inte-

grated data sources. It also supports the specification of user access

rights to control which data elements may be visible and adjusted by

users. Internally, the system is comprised of a backbone that handles
the interpretation and execution of queries across multiple integrated

databases. Each database is integrated using a provider component that
48http://www.porsche.com/

200

http://www.porsche.com/


7.1 Use of Cloud Computing Patterns by Industry Partners

System

queryquery

User

Figure 7.3 – Architecture of the information integration system

accesses the integrated database management system (DBMS). One

specific database is the metadata repository, which is also integrated

using a provider. It contains information about all other integrated

databases. Data maintained by the metadata repository is cached in

a so-called info cache in the backbone to increase performance. An

external corporate user directory is employed to manage the users of the

integration system.

In order to understand the workload behavior of users and its impact on

application components, the workload experienced by the information

integration system was recorded over an extended period of time. As

most users work in the one geographic location, periodic workload (29)

could be identified with low utilization during lunch hours, weekends,

and other off-peak hours, and with peak utilization toward the end

of each week and month, when certain report documents had to be

created. After this recording, a testing instance of the information

201



7 Validation

integration system was deployed, to which the recorded workload

could be replayed. This enabled a detailed analysis of the time required

for processing certain parts of the queries.

Simultaneously, a list of optimization strategies was identified. Themost

successful strategies considered the management of state information

within the information integration system. This optimization effort

could, therefore, be mapped to the state phase of the cloud application

design method. Both remaining steps, component refinement as well

as elasticity and resiliency, have been omitted by this application of the

method by the Dr. Ing. h.c. F. Porsche AG.

The state design phase first considered the patterns of strict consis-
tency (123) and eventual consistency (126). With a growing user group

of the information integration system, the formerly feasible strictly

consistent management of all integrated data introduced a significant

performance decrease. In particular, if a query had to be divided into a

large number of subqueries to the integrated databases, user rights had

to be computed within the scope of each sub-query. For long-running

requests, strict consistency ensured that user rights removed during

the query had an immediate impact on query results. As a means to

increase performance, user rights are now only computed once for each

initial query and are to be directly used by all sub-queries. This small

adjustment was found to lead to a significant performance increase,

while still ensuring strictly consistent behavior of the queried databases.

Only the user access rights experience eventual consistency.

Second, the data abstractor (194) was considered to identify certain

query results that may be abstracted or approximated in order to in-

crease query performance. Again, a rather small adjustment to the

application functionality could be identified that provided a significant

performance increase. Originally, users were given the information

202



7.2 Uninfluenced Use of Cloud Computing Patterns

relating how many data objects returned by a query they were allowed

to access. Providing this information required the evaluation of user

rights for all of the returned data elements. Therefore, the accessible

data objects, as well as the overall number of returned data elements,

are now approximated in order to increase query performance. Nev-

ertheless, users may specify that they require unapproximated data, if

needed.

7.2 Uninfluenced Use of Cloud Computing Patterns
A literature survey and online search have been performed to identify

scientific research publications, online industry resources, and presen-

tations at industry conferences that cite any of the cloud computing

patterns. Sources were considered that fulfilled the following criteria: (i)

citation of one of the scientific publications concerning the cloud com-

puting patterns [FLMS11; FLR+11; FEL+12; FLR+14; FLRS12; FLR+13;

FLR14] or links to the website http://www.cloudcomputingpatterns.

org; (ii) authors of the book on cloud computing patterns [FLR+14] did

not co-author the source describing the use of the cloud computing pat-

terns; and (iii) the source described an actual use of the cloud computing

patterns or the related architectural principles. In particular, sources

were omitted that only mentioned the cloud computing patterns briefly

as motivation, i.e., in the introduction of a research paper or only in

the bibliography, without incorporating these references in the written

text of the publication.

203

http://www.cloudcomputingpatterns.org
http://www.cloudcomputingpatterns.org


7 Validation

7.2.1 Use in Research
Three use categories could be identified in scientific publications that

are covered in the following: (i) the architectural properties and cloud

computing patterns were used, (ii) implementation of one of the cloud

computing patterns was described, (iii) formalisms were developed in

order to use the cloud computing patterns for provider classification and

selection or to facilitate the modeling of cloud computing applications

using modeling languages such as UML.

Use of the Architectural Properties and Cloud Computing Patterns: Han-
mer [Han14] provides some cloud versions of his patterns on fault-

tolerant software [Han07]. These cloud versions of the original patterns

make extensive reference to the cloud computing patterns, thus extend-

ing the pattern language of cloud computing. Gangwar and Rana [GR14]

provide a general introduction to cloud computing and compare its prop-

erties with those of grid computing. The authors used the offering types

described by the cloud reference application (see Section 3.3) as a means

to characterize cloud offerings. Gambi and Pautasso [GP13] identify

the cloud architectural principles as important requirements for cloud

applications to use cloud resources efficiently. The authors transfer

these properties to a cloud-based business process management system

that uses REST interfaces. Falatah and Batarfi [FB14] outline criteria to

consider when using cloud resources and moving existing applications

to the cloud. The IDEAL cloud computing properties have been included

in this catalog to realize them in applications, in order to benefit from a

cloud environment. The two master’s theses of Vainikka [Vai14] and

Araújo [Ara13] used the comparison of cloud application properties to

SOA properties [FLR+13] and the classification of cloud offerings, in

addition to the NIST cloud definition (Section 3.1.1).

204



7.2 Uninfluenced Use of Cloud Computing Patterns

Implementations of the Cloud Computing Patterns: The following sources
referred to the cloud computing patterns to obtain abstract specifica-

tions for their implementations. Bien and Thu [BT14] provide a re-

finement of the multi-tenancy patterns shared component (210), tenant-
isolated component (214), and dedicated component (218) to support a

hierarchical user base: users are organized in hierarchical groups for

which access rights can be expressed. These rules are then enforced

by the refined multi-tenancy patterns. The results have been captured

in a pattern format based on [GHJ94] and have been implemented in

a private cloud (66). Jamshidi and Pahl [JP14] implemented the batch
processing component (185) pattern in a hybrid cloud (75) environment.

The presented architecture of a video processing application based

on Google App Engine
49
, Amazon AWS

50
, and Windows Azure

51
also

seems to resemble the hybrid backend (317) and hybrid application func-
tions (320) patterns, even though this is not mentioned explicitly by the

authors. Kourtesis, Alvarez-Rodríguez, and Paraskakis [KAP14] discuss

and the implementation of the watchdog (260) pattern. In particular, the

authors provide a semantic model of the information sources based on

which a watchdog may identify component failure, which significantly

extends the abstract description of monitoring information given by

the watchdog pattern itself.

Formal Modeling Based on Cloud Computing Patterns: Sousa,

Rudametkin, and Duchien [SRD14] envisioned a formal modeling

language based on cloud computing patterns to describe an application

regarding general hardware and software requirements, such as

scalability, redundancy, and resource location. Suzuki et al. [SPH+12]

describe a method and tools for model-driven engineering of cloud

49http://appengine.google.com/
50http://aws.amazon.com/
51http://azure.microsoft.com/

205

http://appengine.google.com/
http://aws.amazon.com/
http://azure.microsoft.com/


7 Validation

applications based on the cloud computing patterns and messaging

patterns of Hohpe and Woolf [HW03]. Fleck et al. [FTLW14] and

Bergmayr et al. [BTN+14] use UML to formalize modeling with the

cloud computing patterns. Templates in the form of UML
52

models

are provided for cloud computing patterns to simplify their reuse

during model-driven development for different cloud providers.

Di Martino [DiM14] generally identifies that cloud computing patterns

become part of the natural language of IT architects and developers

to refer to common concepts. Furthermore, Di Martino, Cretella, and

Esposito [DCE13] have formalized the document and pattern language

structure of the cloud computing patterns, as well as other patterns

from the same and related domains, using semantic models. These

models describe existing cloud providers and their offerings to guide

selection after relevant patterns have been identified. This approach

has been studied in detail with respect to the Windows Azure
53
cloud

in Di Martino et al. [DCES14].

7.2.2 Use in Industry
An online search has been conducted to find references to the cloud

computing patterns in user groups, forums, blog entries, and especially

in industry presentations for which slideshare
54
and similar platforms

were the main source. The aim of this search was to determine the use

of the cloud computing patterns in industry settings, which could be

classified as follows: (i) use of the pattern names as language elements

to refer to concepts described by the patterns and (ii) introduction

52http://www.uml.org/
53http://azure.microsoft.com/
54http://www.slideshare.net/

206

http://www.uml.org/
http://azure.microsoft.com/
http://www.slideshare.net/


7.2 Uninfluenced Use of Cloud Computing Patterns

of abstract concepts using patterns followed by technology-specific

details.

Pattern Names as Language Elements: Ian van Reenen, the CTO of

CentraStage, refers to the loose coupling (156) pattern to describe the

concept of how the application run by his company could scale with

the increasing workload:
55

“In the last thirty days the device count on CentraStage
Online has grown by more than the total devices added in
our first 4 years of business! We built it to scale so it’s all
good news and happy days and that scale is what allows us to
build new and better features, and provide some great offers
like our current 500 free OnDemand devices. At the heart of
our ability to scale lies the concept of loose coupling in an
elastic cloud. There is a brief description of the concept here
[link to loose coupling pattern] and [link to other source].”

In the Google group of a London-based DevOps Community, a ques-

tion is posed to find a tool that manages configurations and inventory

databases, both of which have to be accessed by different parts of the

application. Themanaged configuration (247) pattern is used to describe

the abstract functionality of the desired tool:
56

“I want to raise a question to the community about tooling
for configuration management or inventory database. [...]
The first problem is that we can assemble an inventory from
different sources: [...]. The second problem is that we need
to consume an inventory in different tools [...]. So we were

55https://community.centrastage.com/centrastage/topics/centrastage_

customer_service_update_friday_19_10_2012
56https://groups.google.com/forum/#!topic/london-devops/RfMsOKr1hr4

207

https://community.centrastage.com/centrastage/topics/centrastage_customer_service_update_friday_19_10_2012
https://community.centrastage.com/centrastage/topics/centrastage_customer_service_update_friday_19_10_2012
https://groups.google.com/forum/#!topic/london-devops/RfMsOKr1hr4


7 Validation

thinking to have a “inventory or configuration manager”
which we will feed from these different sources, and export
to different targets. Something like this pattern: [link to
managed configuration pattern].”

Introduction of Abstract Concepts: The cloud computing patterns are

used in various presentations to communicate the abstract concepts

they capture as a means of education. Jeff Chu, Microsoft MVP, uses

the cloud computing patterns as part of an introduction to development

with Windows Azure.
57

Florian Goerg, IBM Solution Architect, uses

the patterns to introduce abtract concepts, which are then mapped

to IBM open cloud components.
58

Romeo Kienzler, Data Scientist and

Architect at IBM, used the cloud computing patterns in a similar manner

to describe the abstract concepts for big data processing, which where

then mapped to concrete implementations.
59

7.3 Chapter Summary
The cloud computing patterns have been successfully applied to use

cases of two industry partners. The pattern-based design method for

cloud applications has been applied completely or in an adapted form

to improve an existing application. Where the use of the patterns was

not actively influenced by an author of the cloud computing patterns,

patterns have been used by other researchers and in the industry. In

research, the cloud computing patterns have been used to characterize

57http://slideshare.net/regionbbs/designing-cloud-application-

architecture-with-windows-azure-platform
58http://docslide.net/internet/the-ibm-open-cloud-architecture-and-

platform.html
59http://de.slideshare.net/ormium/the-datascients-workplae-of-thefuture

208

http://slideshare.net/regionbbs/designing-cloud-application-architecture-with-windows-azure-platform
http://slideshare.net/regionbbs/designing-cloud-application-architecture-with-windows-azure-platform
http://docslide.net/internet/the-ibm-open-cloud-architecture-and-platform.html
http://docslide.net/internet/the-ibm-open-cloud-architecture-and-platform.html
http://de.slideshare.net/ormium/the-datascients-workplae-of-thefuture


7.3 Chapter Summary

clouds and introduce cloud architectural properties. Some implementa-

tions of the cloud computing patterns have been found that explicitly

gave reference to the implemented cloud computing pattern. Other

work has started to use the cloud computing patterns for modeling of

cloud applications. In industry, the use of cloud computing patterns

as common language elements has been identified in online blogs and

user groups. Also, the cloud computing patterns have been used in pre-

sentations to introduce abstract concepts, which were then technically

refined.

209





CHAPTER8

Conclusions and Outlook

Based on the pattern engineering process introduced in Chapter 1 and

refined in the introductions of Chapters 3 to 5, the identification, au-

thoring, and application of cloud computing patterns were covered.

This process was generalized [FBBL14] to be applicable in other do-

mains where pattern research is to be conducted. After covering related

work on pattern identification and authoring in Chapter 2, the cloud

computing domain was structured for pattern research in Chapter 3,

and an overview of the architectural properties of clouds and cloud

applications was provided. Furthermore, a cloud reference application

was introduced. The structure of the cloud computing patterns them-

selves was covered next by defining the pattern language metamodel

211



8 Conclusions and Outlook

in Chapter 4. All cloud computing patterns were also summarized in

this chapter. For the application of the cloud computing patterns, a

pattern-based cloud application development method was introduced

in Chapter 5. It can be applied to create new applications that use the

cloud as runtime environment. The complete pattern engineering pro-

cess is supported by a toolchain covered in Chapter 6. The validation

in Chapter 7 has shown that the cloud computing patterns were be

applied successfully in two industry use cases and were used in both

research publications and industry.

8.1 Answers to Research Questions
The research questions raised in Chapter 1 have been answered as

follows.

Q-1: “Architectural Baseline”: How can the architectural properties of
cloud applications be identified?

The pattern engineering process has structured the domain of cloud

computing for pattern identification. One means to structure the do-

main has been the analysis of cloud properties (Section 3.1) in order

to deduce the architectural properties of cloud applications enabling

them to benefit from a cloud hosting environment. The contributed

C-1: “IDEAL Cloud Application Properties” have been compared with

other architectural styles (Section 3.2) related to cloud computing in

order to identify similarities and differences.

Q-2: “Pattern Coverage”: How can it be ensured that a set of patterns
enables building a cloud application?

The pattern engineering process has led to the definition of a cloud refer-

ence application (Section 3.3) in order to abstractly describe components

212



8.1 Answers to Research Questions

and functionality to be identified in provider-supplied documentation

and guidelines as well as existing applications to identify patterns. As a

consequence, the contributed C-2: “Cloud Computing Patterns” cover
all of the components and functionality prescribed by the cloud refer-

ence application; thus, the architecture of a cloud application can be

described using these patterns.

Q-3: “Homogeneous Representation”: How can a common textual and
graphical representation of patterns increase perceptibility?

The document format of the cloud computing patterns (Section 4.1)

has been homogenized and formalized using a metamodel (Section 4.2)

described in UML with additional OCL contraints. The use of graphical

elements in the icons and sketches of the cloud computing patterns have

also been homogenized (Section 4.3) by providing a graphical stencil

set and composition rules. These means ensure that the contributed

C-3: “Format of Pattern Documents and Graphical Elements” are similar

throughout the cloud computing pattern documents, increasing their

perceptibility [Pet95].

Q-4: “Pattern Organization”: How can patterns be organized and presented
so that users find relevant patterns quickly?

The metamodel formalizing the pattern format also prescribes how pat-

tern documents can be interrelated to form a pattern language. Through

these interrelations, an IT architect may navigate the pattern documents

by following references among pattern documents. Therefore, the con-

tributed C-4: “Pattern Language Metamodel” ensures that patterns do
not have to be accessed in a linear form. It also forms the basis for

the contributed C-5: “Pattern Organization Tool” (Chapter 6), which

manages the pattern documents and their interrelations. Furthermore,

it enables the querying of the pattern languages based on the typed

references among patterns.

213



8 Conclusions and Outlook

Q-5: “Pattern-Based Design”: How can the selection of patterns be guided
to create the architecture of a cloud application?

While the metamodel of the cloud computing pattern language has

enabled the navigation among patterns, some means are required to

identify the initially applicable patterns. The categorization of the cloud

computing patterns (Section 4.4) has provided some orientation for

selecting patterns: first the environment is characterized, then offerings

are selected. Through references from patterns of these categories,

related cloud application architecture patterns can be selected, followed

by patterns for their management. The contributed C-6: “Pattern-Based
Design Method for Cloud Applications” (Section 5.2) offers an additional

means to access the cloud computing patterns. It describes the phases

of creating a new cloud application and lists patterns to be considered

during each phase. These patterns provide an initial set of patterns to

be selected for an architecture, which may then be refined further by

IT architects.

8.2 Limitations of Cloud Computing Patterns
The use of cloud computing patterns in two industry use cases (Sec-

tion 7.1) has shown two limitations.

First, the cloud computing patterns do not address how to build a cloud

environment and the contained offerings. This restriction was made

during the identification of the cloud computing patterns, as cloud

providers offered minimal information about the internal workings of

the clouds. However, asmany companies desire to use private clouds (66),
patterns for the creation of the cloud itself are required.

214



8.3 Research Opportunities

Second, the abstraction of the cloud computing patterns and patterns

in general, which makes them reusable for different technologies, also

poses a limitation for the approach. The application of the abstract

concept prescribed by a pattern to concrete technologies is a challeng-

ing task for which the required technical detail is not provided by the

pattern document. Therefore, IT architects often have to specify ad-

ditional guidelines and templates to be used by developers during the

implementation of patterns.

8.3 Research Opportunities
Possible extensions to the results presented in this work could be as

follows. The abstract concepts of the cloud computing patterns them-

selves could be improved, leading to new solutions not captured by

the patterns. The cloud computing patterns could be integrated with

other existing patterns, and new patterns could be created. The navi-

gation of the cloud computing pattern language would likely have to

be improved after such an integration, for the purpose of guiding IT

architects. Finally, cloud computing patterns could be interpreted as

architectural decisions and could also be used in modeling tools for

application architectures.

8.3.1 Research-Driven Improvement of Patterns
Patterns always capture knowledge gained from experience. Therefore,

the cloud computing patterns abstract from cloud offerings, provider

documentation and guidelines, as well as existing cloud applications.

The patterns have introduced an abstraction from the best practices

215



8 Conclusions and Outlook

currently in use. These covered abstract concepts may now be reviewed

from a research perspective to develop new and superior solutions.

For example, the cloud computing patterns describe currently-applied

means to enable elasticity in cloud applications. The concept of elastic-

ity may now be researched further, to create superior means to those

used in practice today; for example, as considered by Truong and Dust-

dar [TD15]. The cloud computing patterns could bridge the gap between

industry and research, as they describe current concepts applied in in-

dustry to which research may now provide improvements. As these

improvements are adapted by cloud applications, they extend the cloud

computing patterns, as well.

Another extension of the cloud computing patterns that could be re-

searched is their application in a different environment than originally

intended. For example, the applicability of the cloud computing patterns

in a non-cloud environment could be investigated to evaluate possible

benefits of their use. Nowak et al. [NLS+11; NL13b] used the cloud

computing patterns to reduce the ecological footprint of process-based

applications. They describe respective variants of the cloud computing

patterns to be applied for this purpose.

8.3.2 A Pattern Language for IT Applications
The cloud computing patterns already reference some other patterns

from the IT domain. The analysis of related cloud computing patterns

in Chapter 2 already provided a mapping of the cloud computing pat-

terns presented in this work to these other patterns. However, there

is still a significant number of patterns related to computer science

that have not been integrated. For example, the integration with data

patterns for confidentiality [SBK+12] or data patterns for scientific

216



8.3 Research Opportunities

workflows [RSM14] could be used to relate to more patterns specifically

targeting the domain of data handling.

In particular, as these other existing patterns could likely be added to the

presented pattern repository (Section 6.3) in order to be connected with

each other, a pattern language for IT applications would be formed.

Such an effort would likely require the definition of new reference

types in the pattern language metamodel (Section 4.2) to be used for

references between pattern languages.

Also, new methods and tools are likely necessary to handle the large set

of interrelated pattern documents, as the manual following of references

among patterns becomes too time-consuming. New ways to handle

pattern recommendation likely have to be investigated. The connected

patterns already form a directed graph with typed edges. An addition

to this graph could be values on the edges based on some rationale;

for example, the impact on a property of the resulting application

(cost, performance, etc.). Such an addition could enable better guidance

of pattern users during the selection of patterns fitting their design

goals, as well as an optimization of pattern selection based on specified

goals.

When many patterns from the IT domain are integrated in such a

manner, concepts not covered by these pattern languages may also

become visible. In these areas, pattern research may then be undertaken

according the the pattern engineering process (Section 1.3).

217



8 Conclusions and Outlook

8.3.3 Cloud Computing Patterns as ArchitecturalDecisions
Selection of a pattern represents a decision made by an IT architect.

Each selection of a pattern can, therefore, be interpreted as an archi-

tectural decision [HAZ07]. The rationale behind each architectural

decision could be captured using architectural decision methods and

tools. Zimmermann [Zim09] has presented such an approach in the do-

main of service-oriented architectures (SOA), which is likely applicable

in the domain of cloud computing, as well. Documenting the decisions

for patterns would result in a record of a combination of patterns in a

single application scenario. By comparing the patterns used in multiple

applications, new composite patterns could then be identified.

8.3.4 Pattern-Based Architectural Modeling
Fleck et al. [FTLW14] and Bergmayr et al. [BTN+14] have already used

UML
60
as a means to model applications based on the cloud computing

patterns. These efforts could be extended to other architecture descrip-

tion languages (ADL), such as ACME
61
or AADL,

62
to use the cloud

computing patterns as modeling elements.

The reference implementations of the cloud computing patterns (Sec-

tion 6.4) could likely be used during the refinement of such architectural

models for their implementation. If architectural models are used in

this fashion, runtime information could likely be connected to the orig-

inating architectural model. By doing so, the architectural model could

60http://www.uml.org/
61http://www.cs.cmu.edu/~acme/
62http://www.sei.cmu.edu/architecture/research/model-based-engineering/

aadl.cfm

218

http://www.uml.org/
http://www.cs.cmu.edu/~acme/
http://www.sei.cmu.edu/architecture/research/model-based-engineering/aadl.cfm
http://www.sei.cmu.edu/architecture/research/model-based-engineering/aadl.cfm


8.4 Chapter Summary

provide an abstracted view of a running application. Such architec-

tural views could likely be approached similarly to views on business

processes [Sch15].

8.4 Chapter Summary
The answers to the research questions raised in Chapter 1 have been

presented. Limitations of the cloud computing patterns obtained from

industry use cases were listed. It has been shown that additional pattern

identification should be performed to create patterns describing how

to build the cloud itself, as there is a need for guidelines addressing

the creation of private clouds (66). Furthermore, the refinement to tech-

nologies of abstract concepts covered by patterns was found to be very

challenging. This extension formed one of the discussed research oppor-

tunities. The cloud computing patterns may bridge between industry

and research as research-driven improvements of the abstract concepts

may be contributed back to the pattern. The formalization of the cloud

computing pattern languages may provide a basis to integrate the large

number of patterns existing in the IT domain to obtain a complete pat-
tern language for IT applications. The cloud computing patterns could

also be used to drive and document architectural decisions. Finally, the

cloud computing patterns could also be used as modeling elements in

architecture description languages, which could enable the automated

refinement of such models toward technology-specific models.

219





APPENDIXA

Detailed Pattern Engineering Process

Fig. A.1 shows the detailed pattern engineering process. The results

of the pattern identification phase are detailed in Chapter 3, while the

results of the pattern authoring phase are described in Chapter 4. The

results of the pattern application phase regarding the organization of

cloud computing patterns, as well as the pattern-based design method

for cloud applications, are detailed in Chapter 5. The selection of appli-

cable patterns and their use, also covered by this phase, are supported

by the toolchain presented in Chapter 6.

221



A
D
etailed

Pattern
Engineering

Process

Domain 

Coverage 

Format Design

Review

DesignRevision

Pa

tte
rn Identification

Pattern Authorin

g

Pa

tte
rn Application

Domain
Expert

Pattern
Author

IT Architect

Figure A.1 – Detailed pattern engineering process

222



APPENDIXB

Detailed Mapping of Related Patterns

The following tables map related patterns to the cloud computing pat-

terns presented in this work using the following relations:

Refinement: The related pattern describes the same concept as the

mapped cloud computing pattern, but refines it to a specific set

of technologies or provider-specific offerings.

Aspect Refinement: This is analogous to refinement, but only one

aspect of the cloud computing pattern is discussed.

223



B Detailed Mapping of Related Patterns

Extension: The related pattern describes a concept that is not ad-

dressed by the cloud computing patterns. This can be a technical

or provider-specific detail. In this case, it should be investigated

whether the same concept can be observed at other providers, as

well, to identify new patterns.

Generalization: The related pattern summarizes the concepts of one

or more cloud computing patterns.

Similarity: The related pattern is almost equivalent to a cloud comput-

ing pattern, as it discusses the same concept in a similar context

and with a similar level of detail.

To differentiate between the cloud computing patterns mentioned in

the following tables and the covered related patterns, only the names

of cloud computing pattern are italicized.

224



BDetailedMappingofRelatedPatterns
Table B.1 –Mapping of Cloud Design Patterns (AWS)

Cloud Design Patterns (AWS)
Pattern Summary Mapped to Relation Explanation
Backnet Use multiple virtual network cards connected to

different networks to separate connections from

users and management access.

Out of scope Extension Management of different virtual networks is not con-

sidered by the cloud computing patterns.

Bootstrap Handle configuration files in a storage offering

from where virtual servers acquire them at boot

time.

managed configuration (247) Aspect

Refinement

The bootstrap pattern details polling a managed con-
figuration upon boot time of a virtual server.

Cache

Distribution

Host multiple replicas of content close to users. content distribution
network (300)

Refinement Patterns describe the same strategy. The cache distri-

bution pattern covers specific AWS technology.

Cache Proxy Use virtual servers as cache servers to actively

add caches to the scaled out application.

elastic load balancer (254) Extension The elastic load balancer treats all application compo-

nents among which load is distributed equally. The

cache proxy pattern enables a layering of these in-

stances by introducing caches.

Clone Server Clone a virtual server to handle scaling out. elastic load balancer (254) Aspect

Refinement

The elastic load balancer only states that instances of
virtual servers are added to the system. The Clone

Server pattern describes one way of doing so.

Cloud DI Pass configuration parameter for virtual ma-

chines by passing them in a start configuration

handled by the runtime environment.

hypervisor (101), elastic
infrastructure (87), managed
configuration (247)

Extension Using functionality of the hypervisor and elastic in-
frastructure to enable managed configurations is not

yet considered.

CloudHub Use the cloud provider as a hub to connect multi-

ple remote sites. Each site establishes a VPN con-

nection to the cloud provider.

integration provider (234) Refinement Using a cloud to integrate distributed hosting envi-

ronments is discussed by the integration provider pat-
tern.

DB

Replication

Establish slaves to relational databases in multi-

ple regions and keep them in sync to secure data.

relational database (115) Extension Establishing database replicas manually is not yet

considered by the relational database pattern.
Deep Health

Check

Use a custom PHP page that checks the availabil-

ity of all components of an application. Check the

availability of this page using the AWS load bal-

ancer health check function.

watchdog (260) Aspect

Refinement

The watchdog describes the use of provider-supplied

health checks, i.e., for network availability, heart-

beats are sent from application components, and ap-

plication level checks are performed to verify proper

operation of application functions. The deep health

check pattern describes the last option.

Direct

Hosting

Use storage offerings to host websites. Thus, rely

on a platform offering instead of using servers to

reduce costs.

blob storage (112) Extension The blob storage pattern does not consider the spe-

cial use to host websites directly. It should be inves-

tigated if this type of use is only available in AWS.

2
2
5



BDetailedMappingofRelatedPatterns
Cloud Design Patterns (AWS)
Pattern Summary Mapped to Relation Explanation
Direct Object

Upload

If many users upload files to an application, for

example, video and images, let them upload to

storage offerings directly to avoid this load in the

application.

data access component (188) Extension Bypassing the data access component temporarily is

not yet considered.

Floating IP Switch an IP address from one server to another

in order to decrease downtime during an update.

update transition
process (275)

Aspect

Refinement

The update transition process describes the steps to

update an application component. One step is to

enable an instantaneous switch between application

components of different versions.

Hybrid

Backup

Back up on-premise data to the cloud to keep

backups in a geographically separate location.

hybrid backup (314) Refinement Both patterns describe the same aspects.

Inmemory

DB Cache

Use in memory caches to increase read access per-

formance to databases.

relational database (115) Extension Technical database optimization and caching tech-

niques are not considered by the cloud computing

patterns, but are referenced.

Job Observer Scale the number of virtual servers processing

batch jobs from a queue based on the number of

queued messages.

elastic queue (257) Refinement The elastic queue pattern describes the same aspect.

Monitoring

Integration

Install monitoring software on the virtual servers

in addition to monitoring information offered by

the provider. Collect all of these monitoring data

using the monitoring software to obtain a com-

plete view.

Out of scope Extension Enabling application-level monitoring is not consid-

ered by the cloud computing patterns.

Multi-Load

balancer

Different clients and devices may require differ-

ent access configurations, such as sol encryption,

session affinity, etc. This is handled by using dif-

ferent load balancers for the different types of

clients.

Out of Scope Extension Management of different access credentials for multi-

ple clients is not considered by the cloud computing

patterns.

Multi-

Datacenter

Distribute load across virtual servers running in

geographically separate locations.

elastic load balancer (254),
elastic queue (257), elasticity
manager (250)

Extension The load balancing patterns of the cloud comput-

ing patterns currently do not consider distribution

among multiple data centers.

Multi-Server Use a load balancer to distribute requests among

multiple virtual servers.

elastic load balancer (254),
elastic queue, (257) elasticity
manager (250)

Aspect

Refinement

Distributing load among resources is considered by

all load balancing patterns of the cloud computing

patterns. The multi-server pattern does not consider

the characteristics of this load (e.g. synchronous,

asynchronous, etc.).

NFS Replica Replicate static data from an NFS service to the

virtual hard drive of virtual servers.

blob storage (112) Extension The blob storage pattern only describes how data is

accessed. The NFS replica pattern describes how

such data can be replicated in order to increase ac-

cess performance.

2
2
6



BDetailedMappingofRelatedPatterns
Cloud Design Patterns (AWS)
Pattern Summary Mapped to Relation Explanation
NFS Sharing Use a server offering a network file system (NFS)

service to share data among multiple virtual

server instances.

blob storage (112) Refinement The blob storage pattern describes a file system-like

storage offering. The NFS Sharing pattern covers one

possible implementation of this pattern for Amazon

AWS.

Ondemand

Disk

Add virtual hard drives to a running virtual server

as needed.

block storage (110) Refinement The Ondemand Disk pattern covers how the func-

tionality of the block storage pattern can be used on

demand in AWS.

OnDemand

Nat

Most virtual servers running at a cloud provider

do not need outbound internet connectivity,

which is therefore disabled for security. When

virtual servers are updated, special virtual ma-

chines are provisioned that handle network ad-

dress translation (NAT), thus enabling access to

the Internet during update.

Out of scope Extension Using manually configured virtual servers as net-

working components is not considered by the cloud

computing patterns.

Operational

Firewall

Use virtual firewall configurations to grant access

to each organizational unit of personnel perform-

ing a certain function for the application such as

maintenance, monitoring, or development.

virtual networking (132) Extension Securing the different user and management groups

of an application using network access configuration

is not yet considered.

Priority

Queue

Assign different priorities to messages and pro-

cess those of higher priority first to ensure an ad-

equate level of service.

message-oriented
middleware (136)

Aspect

Refinement

The message-oriented middleware (136) pattern cov-

ers the use of message prioritization, as well.

Private

Distribution

Use access control, links valid only at certain

times, and user-specific URLs to control access to

files in a storage offering.

blob storage (112), data access
component (188)

Refinement The blob storage and data access component patterns
currently do not consider the technical aspect of re-

stricting access to certain times.

Queuing

Chain

Usemessaging to coordinate jobs handled bymul-

tiple systems and increase throughput using par-

allelization.

batch processing
component (185), competing

consumer [HW03]

Refinement The batch processing component describes a sim-

ilar approach to assign messages to processors.

The competing consumer pattern of Hohpe and

Woolf [HW03] describes this concept in general.

Read Replica Create replicas of a relational database to increase

read access performance. All replicas are updated

from a master database where writes also occur.

eventual consistency (126) Refinement The eventual consistency pattern describes the sce-

nario of having a master database that is replicated

to multiple read replicas.

Rename

Distribution

Rename new versions of files to avoid that caches

serve obsolete versions.

blob storage (112), eventual
consistency (126)

Extension The eventual consistent behavior of Amazon’s blob
storage allows this strategy to enable immediate visi-

bility of new file versions for all clients. It should be

investigated whether this is also possible for other

cloud providers.

2
2
7



BDetailedMappingofRelatedPatterns
Cloud Design Patterns (AWS)
Pattern Summary Mapped to Relation Explanation
Rewrite

Proxy

Use a proxy server in addition to a Web appli-

cation to serve static content more quickly by

assigning requests to content delivery networks

and provider-supplied storage offerings using the

proxy. This even works without adjusting a pos-

sibly existing Web application.

hybrid multimedia web
application (323)

Aspect

Refinement

The hybrid multimedia web application does not de-

scribe how an existing application can exploit exter-

nal storage offerings and provider-services making

content accessible.

Scale Out Distribute load across virtual servers using a load

balancer and adjust the number of virtual servers

with respect to the workload.

elastic load balancer (254) Refinement Describes how the elastic load balancer pattern is im-

plemented for Amazon AWS.

Scale up Change the capabilities of a virtual server (CPU,

memory, etc.) by restarting it with a different con-

figuration.

elastic load balancer (254),
elastic queue (257), elasticity
manager (250)

Extension The cloud computing patterns only consider elas-

tic scaling, the scaling by addition of more resource

numbers. An incorporation of a scaling up strategy

– even though it may be limited in the scope of cloud

computing – could be beneficial.

Scheduled

Autoscaling

Process batch jobs contained in a queue when

their processing is most feasible.

batch processing
component (185)

Refinement The batch processing component pattern describes the
same aspect.

Scheduled

Scale Out

Proactively add virtual servers to an application

during times of the day, week, etc. when higher

loads are common. This ensures improved re-

sponsiveness compared with scaling based on

monitored load changes.

once-in-a-lifetime
workload (33), periodic
workload (29)

Refinement The scheduled scale out pattern covers how thework-

load types described by the once-in-a-lifetime work-
load and periodic workload patterns can be handled

in Amazon AWS.

Server

Swapping

If a virtual server is faulty, start a replacement and

reassign the virtual hard drive of the faulty server

to the replacement.

watchdog (260) Aspect

Refinement

The server swapping pattern details the technical re-

placement of a faulty server.

Sharding

Write

Distribute tables across instances of a database

management system to increase write perfor-

mance.

relational database (115) Extension Technical database optimization and caching tech-

niques are not considered by the cloud computing

patterns, but other sources are referenced.

Snapshot Backup of EC2 servers based on virtual hard drive

images.

hybrid backup (314) Aspect

Refinement

The snapshot pattern describes the backup based on

virtual machine images, which is one aspect of the

hybrid backup pattern.

Stack

Deployment

Configure a group of virtual servers and start or

stop them as a whole using this template.

Out of scope Extension The configuration of virtual servers as a deployment

unit is not yet considered.

Stamp Start multiple virtual servers by replicating a run-

ning server.

elastic load balancer (254),
elastic queue (257), elasticity
manager (250)

Extension The stamp pattern discusses how Amazon AWS func-

tionality can be used to handle the addition of virtual

server instances required by the elastic load balancer,
elastic queue, and elasticity manager patterns.

2
2
8



BDetailedMappingofRelatedPatterns
Cloud Design Patterns (AWS)
Pattern Summary Mapped to Relation Explanation
State Sharing Make applications hosted on virtual servers state-

less. Keep application state in a provider-supplied

storage offering.

stateless component (171) Refinement The stateless component pattern describes that appli-

cation state and session state should not be contained

in component instances. The state sharing pattern

describes how application state can be kept external.

Storage Index When storing large files in a storage offering,

save metadata in a key-value storage that can be

queried more efficiently.

blob storage (112) Extension The blob storage pattern assumes that the cloud

provider can create an index of contained files.

URL

Rewriting

Manage static content in a provider-supplied stor-

age offering. This content is referenced from a

Web application to be acquired from the provider

storage offering directly by browsers accessing

the Web application.

hybrid multimedia web
application (323)

Refinement The hybridmultimedia web application describes how
large multi-media files can be managed in an elas-

tic cloud to be accessed directly by clients. The URL

rewriting pattern describes this concept using Ama-

zon AWS technologies.

WAF Proxy Web application firewall software is installed on

proxy servers to determine the number of re-

quired licenses. Other virtual servers behind

these proxies can be scaled out flexibly.

Out of Scope Extension Manual installation and management of firewall soft-

ware is not considered by the cloud computing pat-

terns.

Web Storage Serve large files directly from storage offerings in-

stead of webservers to decrease load on servers.

Browsers accessing the webserver thus directly

access the large files.

hybrid multimedia web
application (323)

Refinement The hybrid multimedia web application pattern dis-

cusses a similar setup to serve large files more effi-

cently to users. The web storage pattern describes

how this can be realized using AWS.

Web Storage

Archive

Use storage offerings to archive application log

files.

Out of scope Extension Log file management is not yet considered by the

cloud computing patterns.

Weighted

Transition

When switching between two instances of a Web

application, use a weighted DNS-based round

robin algorithm to transition between both run-

ning instances.

update transition
process (275)

Aspect

Refinement

The update transition process describes the steps to

update an application component. This may include

a transitional switch between two component ver-

sions.

Write Proxy When transferring large files or many small files

to a storage offering, archive them or split them

first. Then send them to a virtual server at the

cloud provider where the alterations are reversed.

This makes the file transfer more durable.

data access component (188) Extension The data access component does not yet cover spe-

cial techniques for upload of large files or many small

files.

2
2
9



BDetailedMappingofRelatedPatterns
Table B.2 –Mapping of Cloud Design Patterns (Windows Azure)

Cloud Design Patterns (Azure)
Pattern Summary Mapped to Relation Explanation
Cache-Aside Store accessed data in a cache to improve perfor-

mance. Check freshness of data upon later ac-

cesses.

Out of scope Extension The details of cache management are not covered by

the cloud computing patterns. This pattern is, how-

ever, related to eventual consistency, as it covers a

strategy to keep data replicas consistent.

Asynchronous

Messaging

Messaging is used by many distributed applica-

tions to enable scalability and resiliency.

message-oriented
middleware (136)

Extension The asynchronous messaging pattern covers messag-

ing in greater detail, where themessage-oriented mid-
dleware (136) pattern references patterns of Hohpe

and Woolf [HW03].

Autoscaling Manually adjusting resource number can be inef-

ficient; thus, this process should be automated.

elasticity manager (250) Refinement The autoscaling guidance describes how to scale an

application based on resource utilization just as the

elasticity manager pattern suggests. Other strategies

based on monitoring synchronous requests or asyn-

chronous requests as described by the elastic load bal-
ancer (254) and elastic queue (257) pattern, respec-

tively, are not covered.

Caching Often-accessed data should be handled by in-

memory caches or shared caches to increase per-

formance.

Out of scope Extension Caching strategies are not covered by the cloud com-

puting patterns. The eventual consistency and strict

consistency pattern seem related, as they cover gen-

eral management of data replicas.

Circuit

Breaker

The repeated execution of an operation that is

likely to fail is avoided to reduce the load gener-

ated by retries.

Out of scope Extension The circuit breaker pattern describes how application

components should behave if they cannot interact

with remote functionality. In the scope of the cloud

computing patterns, this interaction is considered to

be enabled through messaging. The circuit breaker

pattern should be considered if synchronous commu-

nication is used.

Command

and Query

Responsibil-

ity

Segregation

(CQRS)

Operations that read data are segregated from op-

erations that update data by using separate inter-

faces.

data access component (188) Extension The data access component pattern describes how ac-

cess functionality to retrieve data can be offered by

an application component. The CQRS pattern ex-

tends the covered concept toward a use of several

data access components for different purposes (read

and write).

2
3
0



BDetailedMappingofRelatedPatterns
Cloud Design Patterns (Azure)
Pattern Summary Mapped to Relation Explanation
Compensating

Transaction

When using eventual consistent storage offerings

that do not support distributed transactions, de-

fine compensation actions for each of the changes

made by a process in order to possibly revert all

of them if a step fails.

Out of scope Extension The transactional processor pattern seems to cover

a related topic, as it describes the transaction-based

interaction with storage offerings.

Competing

Consumers

Multiplemessage processors access the samemes-

sage channel in order to balance load among

them.

message-oriented
middleware (136)

Refinement The competing consumers pattern has originally

been described by Hohpe and Woolf [HW03]. It

has been summarized by the message-oriented mid-
dleware pattern.

Compute

Partitioning

Application functionality should be decomposed

into logical components that are then summa-

rized to physical partitions that can be deployed

in an efficient manner.

distributed application (160),

multi-component image (206)
Refinement The distributed application pattern describes the

same decomposition of application functionality into

logical components that are then summarized into

tiers that can be deployed as a unit. The multi-
component image also seems related, as it describes

howmultiple application components should be sum-

marized into a virtual machine image.

Compute

Resource

Consolida-

tion

Summarize different application functionality

into a computational unit that can be deployed in

order to increase the utilization of the resulting

unit and reduce hosting costs.

distributed application (160),

two-tier cloud
application (290), three-tier
cloud application (294)

Aspect

Refinement

The distributed application pattern describes the de-

composition of application functionality into multi-

ple logical application components that are then sum-

marized into tiers to be deployed as units. The two-
tier cloud application and three-tier cloud application
patterns are often used in distributed applications.

Data

Consistency

Consistency of data has to be weighted against

availability in large distributed applications.

eventual consistency (126),

strict consistency (123), data
access component (188)

Refinement Data consistency is described as strict or eventual.

The data access component covers strategies about

how to alter this behavior displayed by storage of-

ferings.

Data

Partitioning

Large volumes of data should be partitioned to

improve scalability and optimize performance.

Out of scope Extension Strategies for how to distribute data across multi-

ple storage offerings are not yet considered by cloud

computing patterns.

Data

Replication

and Synchro-

nization

Data stored in multiple locations has to be syn-

chronized, which has to consider the updates to

data.

content distribution
network (300), hybrid
data (311), hybrid
backup (314)

Generalization The cloud computing patterns describe the behav-

ior of data replication and synchronization always

within the scope of patterns that use these concepts.

A general overview of strategies for replication and

synchronization has not been covered.

Event

Sourcing

An append-only storage is used to collect all al-

terations of application data instead of managing

only the current state to avoid update conflicts,

auditing, responsiveness, etc.

Out of scope Extension The event sourcing pattern seems to describe a type

of storage offering that has not yet been generalized

by the cloud computing patterns.

2
3
1



BDetailedMappingofRelatedPatterns
Cloud Design Patterns (Azure)
Pattern Summary Mapped to Relation Explanation
External Con-

figuration

Store

Configuration data is not keept in deployment

packages of an application but kept at a central-

ized location.

managed configuration (247) Aspect

Refinement

The external configuration store describes the pull

model to manage configurations.

Federated

Identity

Authentication of accesses is delegated to an ex-

ternal identity provider.

Out of scope Extension The cloud computing patterns currently do not con-

sider identity management.

Gatekeeper A dedicated application component acts as a bro-

ker between clients and an application to validate

and sanitize requests to increase security.

Out of scope Extension The cloud computing patterns currently do not con-

sider the validation and security checks for requests

issued toward and application. The gatekeeper pat-

tern could extend the elastic load balancer (254) and
elastic queue (257) patterns, which also process re-

quests to an application.

Health

Endpoint

Monitoring

Functional checks within an application are per-

formed by specialized components, which make

the results of such checks available via an inter-

face.

watchdog (260) Aspect

Refinement

The health endpoint monitoring pattern describes

how to implement the aspect of application-level

checks described by the watchdog pattern.

Index Table Create an index of data that is often accessed by

queries to a database in order to increase perfor-

mance.

Out of scope Extension Indexes are a common concept for database optimiza-

tion. The index table pattern, therefore, is related to

the relational database (115) pattern. However, the

relational database references other sources covering
index tables and does not describe this as part of the

pattern.

Instrumenta-

tion and

Telemetry

Custom diagnostic functions (instrumentation)

and the collection of provided information

(telemetry) should be added to an application in

order to monitor its status.

watchdog (260) Refinement The watchdog pattern covers monitoring application

health using provider-supplied data, heartbeat mes-

sages of components, and application-level checks.

General strategies for how to collect monitoring in-

formation about a cloud application are not covered

by the cloud computing patterns.

Leader

Election

Multiple actions performed by concurrently run-

ning instances of tasks handled by an applica-

tion are coordinated by electing one instance as

a leader that coordinates other instances.

Out of scope Extension The cloud computing patterns consider applications

to process requests in parallel. A need for synchro-

nization of parallel tasks has not been considered.

Materialized

View

Views of data are stored separately to increase

query performance.

Out of scope Extension Materialized views are a concept for database opti-

mization. The materialized view pattern, therefore,

seems to be related to the relational database (115)

pattern. However, the relational database pattern ref-

erences other sources covering materialized views

and does not describe this as part of the pattern.

2
3
2



BDetailedMappingofRelatedPatterns
Cloud Design Patterns (Azure)
Pattern Summary Mapped to Relation Explanation
Multiple

Datacenter

Deployment

Applications are deployed into multiple data cen-

ters to increase availability and access perfor-

mance.

content distribution
network (300)

Extension The multiple datacenter deployment guidance fo-

cuses on requirements and regulations that have to

be considered when hosting an application in multi-

ple data centers.

Pipes and

Filters

A task of complex processing in decomposed into

a series of discrete elements that can be reused.

distributed application (160) Aspect

Refinement

The pipes and filters decomposition of application

functionality is one of the decomposition strategies

covered by the distributed application pattern.

Priority

Queue

Messages are prioritized based on priority infor-

mation associated with messages.

message-oriented
middleware (136)

Extension The priorization of messages is summarized in the

message-oriented middleware pattern.
Queue-Based

Load

Leveling

A messaging queue is used as a buffer for a mes-

sage processor, so that load peaks will not over-

load the message processor.

batch processing
component (185),
elastic queue (257)

Refinement The batch processing component describes how mes-

sages can be stored until their processing is feasible.

The elastic queue pattern scales an application based

on messages in a queue; thus, it can implement simi-

lar behavior.

Retry An operation that accesses functionality over a

network is re-executed in order to cope with tem-

porary failures.

Out of scope Extension The cloud computing patterns consider message-

based applications, thus relying on asynchronous

communication. Unavailability of synchronously en-

acted interfaces could be a promising extension.

Runtime Re-

configuration

Changes to an application at runtime do not re-

quire redeployment, but are updated during run-

time of application components.

managed configuration (247) Aspect

Refinement

The runtime reconfiguration pattern describes the

push model used to update configurations of applica-

tion component instances as described by the man-
aged configuration pattern.

Scheduler

Agent

Supervisor

A set of actions performed by distributed re-

sources is coordinated by a central agent that en-

acts functionality offered by the distributed re-

sources.

distributed application (160) Extension The scheduler agent supervisor considers a central-

ized notion of a workflow executed by the distributed

application. This concept is covered by the dis-
tributed application pattern as a process-based de-

composition strategy.

Service

Metering

Use of the application is metered in order to bill

it to users, plan for future requirements, etc.

Out of scope Extension Metering of application use is not explicitly covered

by the cloud computing patterns. These topics are

valid extension points, especially if the cloud appli-

cation should be offered as a service.

Sharding Data handled by a storage offerings is partitions

into subsets to be distributed amongmultiple stor-

age offerings in order to increase performance.

relational database (115) Extension Sharding of database tables is a common concept of

database optimization of relational databases. Re-

lated sources have been referenced by the relational
database pattern.

Static

Content

Hosting

StaticWeb content is directly provided by storage

offerings to client browsers in order to avoid the

necessity of compute resources.

hybrid multimedia web
application (323)

Extension The hybrid multimedia web application pattern de-

scribes a similar concept to manage large files that

are components of websites.

2
3
3



BDetailedMappingofRelatedPatterns
Cloud Design Patterns (Azure)
Pattern Summary Mapped to Relation Explanation
Throttling Resource consumption of individual application

instances, tenants, etc. are only scaled up until a

certain threshold. If the threshold is reached, con-

sumption of additional resources is disallowed to

control resource consumption.

feature flag management
process (271)

Extension The feature flag management process pattern de-

scribes how an application can cope with the unavail-

ability of resources. Controlling the maximum of al-

lowed resources is a separate concept that could be

integrated or added.

Valet Key Access tokens are issued to clients of an appli-

cation so that they may upload data directly to

a storage offering and avoid relaying this data

through an application component.

data access component (188) Extension The valet key pattern optimizes data upload, which

is one aspect handled by the data access component
pattern.

2
3
4



BDetailedMappingofRelatedPatterns
Table B.3 –Mapping of Cloud Architecture Patterns

Cloud Architecture Patterns
Pattern Summary Mapped to Relation Explanation
Auto-Scaling Addition and removal of resources to and from

an application should be automated in order to

reduce costs and avoid human errors.

elasticity manager (250),
elastic load balancer (254),
elastic queue (257), elasticity
management process (267)

Extension The auto-scaling pattern briefly summarizes the

cloud computing patterns handling elasticity. It cov-

ers different monitoring information to identify in-

creasing and decreasing workload. An extension of

the concept is a brief discussion of scaling strategies,

i.e., how quickly to react to workload increase and de-

crease, how many resources to “overprovision”, etc.

Busy Signal If a request to a service is answered by a busy sig-

nal, i.e., a notification that the service is temporar-

ily unavailable, it is retried a couple of times prior

to treating the called service as unavailable.

Out of scope Extension The cloud computing patterns mostly consider

message-based applications to ensure loose cou-
pling (156) among interacting application compo-

nents. The busy signal pattern would also be an ade-

quate extension to discuss synchronous interaction.

CDN Content served by an application is distributed

globally in order to increase performance for the

globally distributed user group.

content distribution
network (300)

Similarity Both patterns describe the same aspect.

Colocate Deploy nodes that interact often close to each

other, i.e., in the same data center.

Out of scope Extension A deployment optimization of application compo-

nents among multiple data centers is not yet consid-

ered by the cloud computing patterns.

Database-

Sharding

A database is distributed among multiple

databases (shards) having the same schema in

order to horizontally scale data.

relational database (115) Extension Database sharing is a long-established optimization

for databases. It has not been covered explicitly by

the cloud computing patterns.

Horizontal

Scaling

Compute

Compute nodes are added and removed dynami-

cally from the application. Nodes are stateless to

simplify this process.

stateless component (171),
standby pooling process (279),
loose coupling (156)

Extension The horizontal scaling compute pattern summarizes

aspects of the stateless component pattern (how can

resources be added easily) and discusses the avail-

ability of new resources (related to the standby pool-
ing process pattern). Elasticity as a concept is in-

troduced by the IDEAL cloud computing properties

rather than a separate pattern. A discussion of differ-

ent rental models forms an extension introduced by

the horizontal scaling compute pattern.

MapReduce Processing of parallelizable datasets by different

nodes.

map reduce (106) Refinement This pattern focuses on the Azure Hadoop Service,

which has been available as a preview at the time of

writing. Some map reduce programming languages

are discussed briefly.

2
3
5



BDetailedMappingofRelatedPatterns
Cloud Architecture Patterns
Pattern Summary Mapped to Relation Explanation
Multisite

Deployment

Instances of an application are globally dis-

tributed in order to better serve globally dis-

tributed users. Data of instances is synchronized.

hybrid application
functions (320)

Refinement The hybrid application functions pattern distributes

application functions among multiple geographic lo-

cations, as the functions have different requirements.

The multisite deployment pattern hosts all applica-

tion functions in multiple geographic locations.

Node Failure Application functionality running on a compute

node, for example, a virtual machine, reacts to

signals of the cloud provider, enabling a graceful

shutdown of the resource.

Out of scope Extension The cloud computing patterns consider application

components to possibly fail at any time without no-

tice and enable the application to cope with this be-

havior. Considering a graceful shutdown poses an

extension that is not currently covered.

Queue-

Centric

Workflow

Interactive requests are handled by a user inter-

face and put into a queue where they are asyn-

chronously picked up by another node for pro-

cessing. This is mostly done for requests that are

time-consuming, resource-intensive, or depend

on remote services.

processing component (180),
user interface
component (175), two-tier
cloud application (290),

idempotent processor (197)

Generalization The queue-centric workflow pattern summarizes

concepts for the processing component and user inter-
face component patterns. The composition of these

two patterns seems similar to the two-tier cloud ap-
plication pattern without discussing data handling in

detail. The problem of message duplicates is also cov-

ered similarly to the idempotent processor pattern.
Valet Key Issue tokens to clients of an application that allow

them to temporarily interact directlywith storage

offerings to upload files. This avoids load on ap-

plication components through which the upload

would have to take place.

data access component (188) Extension The data access component pattern does not yet con-

sider mechanisms to temporarily allow direct inter-

action with the storage offering it provides access to.

2
3
6



BDetailedMappingofRelatedPatterns
Table B.4 –Mapping of Patterns from CloudPatterns.org

CloudPatterns.org
Pattern Summary Mapped to Relation Explanation
Audit Monitor Access information to services is monitored to

support regulatory and contractual obligations.

elastic infrastructure (87),
elastic platform (91),

Infrastructure as a
Service (IaaS) (45)

Extension The audit monitor describes the monitoring of

services in detail, i.e., how monitoring is enabled

at the provider.

Automated

Administration

Management tasks are automated as scripts and

handled by a central automation engine.

All patterns of the

management process

category

Generalization The cloud computing patterns detail multiple

management process patterns that are handled by

dedicated management components.

Automated

Scaling Listener

Workload experienced by a cloud service is mon-

itored in order to scale resources accordingly.

elastic load balancer (254) Aspect

Refinement

The automated scaling listener summarizes the

concept of scaling rules in order to add and re-

move resources based on certain conditions.

Bare-Metal

Provisioning

Remote management support of hardware is

used to dynamically install operating systems to

servers.

Out of scope Extension The cloud computing patterns do not cover the or-

ganization of physical hardware in order to build

a cloud.

Billing

Management

System

Cloud providers monitor the use of cloud re-

sources in order to enable pay-per-use pricing

models.

Infrastructure as a
Service (IaaS) (45), Platform
as a Service (PaaS) (49),
Software as a Service (SaaS)
(55)

Extension The cloud computing patterns only describe how

the cloud service models behave. The billingman-

agement system pattern also details how cloud

providers build such a service internally.

Broad Access Cloud services support multiple clients. Unknown N/A The current version of the pattern does not pro-

vide enough detail in order to be compared with

the cloud computing patterns.

Burst In The current version of this pattern only lists other

of the abovementioned patterns that have to be

combined by this pattern. Currently, no addi-

tional explanatory text is provided.

Unknown N/A The current version of the pattern does not pro-

vide enough detail in order to be compared with

the cloud computing patterns.

Burst Out to

Private Cloud

The current version of this pattern only lists other

of the abovementioned patterns that have to be

combined by this pattern. Currently, no addi-

tional explanatory text is provided.

Unknown N/A The current version of the pattern does not pro-

vide enough detail in order to be compared with

the cloud computing patterns.

Burst Out to

Public Cloud

The current version of this pattern only lists other

of the abovementioned patterns that have to be

combined by this pattern. Currently, no addi-

tional explanatory text is provided.

Unknown N/A The current version of the pattern does not pro-

vide enough detail in order to be compared with

the cloud computing patterns.

Centralized

Remote

Administration

Cloud providers consolidate multiple manage-

ment features in one user interface.

Out of scope N/A The consolidation of management interfaces

would propose a valid extension to the behavior

description of cloud providers.

2
3
7



BDetailedMappingofRelatedPatterns
CloudPatterns.org
Pattern Summary Mapped to Relation Explanation
Cloud Balancing The current version of this pattern only lists other

of the abovementioned patterns that have to be

combined by this pattern. Currently, no addi-

tional explanatory text is provided.

Unknown N/A The current version of the pattern does not pro-

vide enough detail in order to be compared with

the cloud computing patterns.

Cloud Bursting The current version of this pattern only lists other

of the abovementioned patterns that have to be

combined by this pattern. Currently, no addi-

tional explanatory text is provided.

Unknown N/A The current version of the pattern does not pro-

vide enough detail in order to be compared with

the cloud computing patterns.

Cloud Storage

Device

Cloud providers offer different storage devices,

such as files, blocks, datasets and objects.

block storage (110), relational
database (115), key-value
storage (119)

Generalization The cloud storage device pattern gives a brief

overview of available cloud storage offerings.

The introduced "objects" type is an extension, but

only described very briefly.

Cloud Usage

Monitor

Usage of cloud resources can be monitored using

agents (monitor acesses), resource agents (moni-

tor state of resources), or polling agents (periodi-

cally request resource state).

Infrastructure as a
Service, (IaaS) (45) Platform
as a Service (PaaS) (49),
Software as a Service (SaaS)
(55)

Extension The cloud usage monitor details the monitoring

of resource use implemented by a cloud provider

to enable pay-per-use billing.

Cross-

Hypervisor

Workload

Mobility

Standardized virtual machine formats, such as

OVF,
63

are used to transfer virtual machines be-

tween hypervisors.

Migration Patterns

introduced in [FLR+13]

Extension Themanagement patterns startedwork on themi-

gration of existing applications. Hypervisor com-

patibility was a major issue. The final version of

the cross-hypervisor workload mobility pattern

may provide solutions for these challenges.

Cross-Storage

Device Vertical

Tiering

A LUN (logical unit identifier in a storage area

network) is used to move LUN disks.

elastic infrastructure (87) Extension Management of storage area networks is not cov-

ered by the cloud computing patterns.

Direct I/O Access A virtual server directly accesses hardware in the

physical host.

hypervisor (101) Extension The technical specifics of hypervisors are not cov-

ered by the cloud computing patterns.

Direct LUN

Access

A virtual server may directly access a LUN disc. block storage (110) Aspect

Refinement

The block storage pattern discusses, in general,

how virtual disks may be used over a network.

LUN access is one technical implementation of

this aspect.

Dynamic Data

Normalization

Data handled in a cloud storage service is normal-

ized to avoid duplicate storage of the same data.

block storage (110) Extension The optimization of storage performed by a cloud

provider is not covered by the cloud computing

patterns.

Dynamic Failure

Detection and

Recovery

A watchdog supervises cloud resources and re-

places failing ones.

watchdog (260) Similarity Both patterns describe similar failure detection

and recovery concepts.

63http://www.dmtf.org/standards/ovf

2
3
8

http://www.dmtf.org/standards/ovf


BDetailedMappingofRelatedPatterns
CloudPatterns.org
Pattern Summary Mapped to Relation Explanation
Dynamic

Scalability

The capabilities of cloud resources are adjusted

with respect to experienced workload.

elasticity manager (250),
elastic load balancer (254),
elastic queue (257)

Extension The dynamic scalability pattern focuses on how

to incorporate scaling up with scaling out and re-

location of resources. The cloud computing pat-

terns currently focus on scaling out.

Elastic Disk

Provisioning

Virtual disks are billed according to the contained

data, not based on the size of the disk.

Out of scope Extension The cloud computing patterns do not cover the or-

ganization of physical hardware in order to build

a cloud.

Elastic

Environment

The current version of this pattern only lists other

of the abovementioned patterns that have to be

combined by this pattern. Currently, no addi-

tional explanatory text is provided.

Unknown N/A The current version of the pattern does not pro-

vide enough detail in order to be compared with

the cloud computing patterns.

Elastic Network

Capacity

The capabilities of the connection network are dy-

namically adjusted to the experienced workload

virtual networking (132) Extension The virtual network pattern currently does not

specifically describe how bandwidth can be con-

figured dynamically.

Elastic Resource

Capacity

CPUs and RAM are dynamically added to virtual

servers in order to adjust their capabilities to ex-

perienced workload.

elastic infrastructure (87) Extension The elastic resource capacity pattern discusses

the technical detail of virtual server scaling.

External Virtual

Server

Accessibility

Virtual servers are connected using virtual

switches.

virtual networking (132) Extension The final version of the pattern should be com-

pared with the mapped pattern(s) to find possible

extensions / establish relations.

Failover System For IT resources, a redundant or standby re-

source instance is provided that instantly replaces

a failing resource. This failover can be active-

active (both resources handle workload) or active-

passive (one resource handlesworkload, the other

is only active if the first resource becomes un-

available).

distributed application (160) Generalization The failover system generally describes why

cloud applications and cloud services use multi-

ple resources to enable higher performance and

resiliency.

Hypervisor Physical hardware is abstracted into virtual hard-

ware in order to host multiple virtual servers on

a physical service.

hypervisor (101) Similarity Both hypervisor patterns describe similar con-

cepts.

Hypervisor

Clustering

Hypervisors are installed on multiple physical

servers for resiliency.

hypervisor (101) Extension The hypervisor pattern does not cover how to

build a hypervisor, but when and how to use one.

Infrastructure-as-

a-Service

(IaaS)

The current version of this pattern only lists other

of the abovementioned patterns that have to be

combined by this pattern. Currently, no addi-

tional explanatory text is provided.

Unknown N/A The current version of the pattern does not pro-

vide enough detail in order to be compared with

the cloud computing patterns.

Intra-Storage

Device Vertical

Data Tiering

A cloud storage device integrates multiple physi-

cal disks.

Out of scope N/A The cloud computing patterns do not cover the or-

ganization of hardware in order to build a cloud.2
3
9



BDetailedMappingofRelatedPatterns
CloudPatterns.org
Pattern Summary Mapped to Relation Explanation
Load Balanced

Virtual Server

Instances

Virtual servers are dynamically moved among

physical servers to balance workload.

Out of scope N/A The cloud computing patterns do not cover the or-

ganization of hardware in order to build a cloud.

Load Balanced

Virtual Switches

Traffic is balanced across multiple virtual and

physical switches.

Out of scope N/A The cloud computing patterns do not cover the or-

ganization of hardware in order to build a cloud.

Load Balancer Workload is distributed among multiple re-

sources according to several distribution func-

tions.

elastic load balancer (254),
elastic queue (257), elasticity
manager (250)

Generalization The cloud computing patterns only describe load

balancing in addition to elastic scaling of re-

sources. The load balancer pattern covers strate-

gies for load balancing in general. This function-

ality is often offered by the cloud provider.

Logical Network

Perimeter

An isolation of a network environment from the

rest of a communications network to establish a

virtual network boundary between IT resources.

virtual networking (132) Similarity The logical network perimeter covers virtual fire-

walls and virtual private networks between a

cloud customer and a cloud provider, similar to

the virtual networking pattern.

Memory Over-

Committing

Virtual servers hosted on one physical server are

assigned more virtual memory than what is phys-

ically available on the host.

Out of scope N/A The cloud computing patterns do not cover the or-

ganization of hardware in order to build a cloud.

Multi-Device

Broker

A cloud service is encapsulated by a broker in or-

der to validate accesses, transform protocols, pro-

vide access for different devices, etc.

provider adapter (243), data
access component (188)

Generalization The multi-device broker summarizes concepts to

access different cloud offerings that have been

captured as multiple patterns in the cloud com-

puting patterns. A possible extension is to

route accessing devices to different user inter-

faces based on the type of device used; for exam-

ple, mobile phones. This concept is currently not

considered by the cloud computing patterns.

Multipath

Resource Access

IT resources are connected through redundant

network paths.

Out of scope N/A The cloud computing patterns do not cover the or-

ganization of hardware in order to build a cloud.

Multitenant

Environment

The current version of this pattern only lists other

of the abovementioned patterns that have to be

combined by this pattern. Currently, no addi-

tional explanatory text is provided.

Unknown N/A The current version of the pattern does not pro-

vide enough detail in order to be compared with

the cloud computing patterns.

NIC Teaming Networking cards are configured for concurrent

use.

Out of scope N/A The cloud computing patterns do not cover the or-

ganization of hardware in order to build a cloud.

Non-Disruptive

Service

Relocation

Virtualization enables the migration of cloud re-

sources without downtime.

Migration patterns

introduced in [FLR+13]

Extension The migration patterns consider the move of ap-

plications. The non-disruptive service relocation

pattern may impact the described migration pro-

cesses.

2
4
0



BDetailedMappingofRelatedPatterns
CloudPatterns.org
Pattern Summary Mapped to Relation Explanation
Pay-as-You-Go Resource use is monitored to enable pay-per-use

billing.

Out of scope N/A The cloud computing patterns do not cover how

pay-per-use billing can be created for developed

applications. This may be a valid extension point.

The current version of the pay-as-you-go pattern,

however, is too brief for an evaluation.

Pay-Per-Use

Monitor

Based on monitored resource usage, pay-per-use

billing models are enabled by the cloud provider.

Infrastructure as a
Service (IaaS) (45), Platform
as a Service (PaaS) (49),
Software as a Service (SaaS)
(55)

Extension Details the monitoring of resource use imple-

mented by a cloud provider to enable pay-per-use

billing.

Persistent

Virtual Network

Configuration

Network configuration of virtual servers is stored

centrally in order to be equivalent after a virtual

server has been moved between physical servers.

Out of scope N/A The cloud computing patterns do not cover the or-

ganization of hardware in order to build a cloud.

Platform

Provisioning

Virtual server images are used to provide ready-

to-use runtime platforms.

Out of scope N/A The cloud computing patterns do not cover the or-

ganization of hardware in order to build a cloud.

The platform provisioning pattern seems to dis-

cuss the creation of an elastic platform.

Platform-as-a-

Service

(PaaS)

The current version of this pattern only lists other

of the abovementioned patterns that have to be

combined by this pattern. Currently, no addi-

tional explanatory text is provided.

Unknown N/A The current version of the pattern does not pro-

vide enough detail in order to be compared with

the cloud computing patterns.

Power

Consumption

Reduction

Hypervisors that are not in use are powered off. Out of scope N/A The cloud computing patterns do not cover the or-

ganization of hardware in order to build a cloud.

Private Cloud The current version of this pattern only lists other

of the abovementioned patterns that have to be

combined by this pattern. Currently, no addi-

tional explanatory text is provided.

Unknown N/A The current version of the pattern does not pro-

vide enough detail in order to be compared with

the cloud computing patterns.

Public Cloud The current version of this pattern only lists other

of the abovementioned patterns that have to be

combined by this pattern. Currently, no addi-

tional explanatory text is provided.

Unknown N/A The current version of the pattern does not pro-

vide enough detail in order to be compared with

the cloud computing patterns.

Rapid

Provisioning

A provisioning engine automates the setup of

cloud resources.

elastic infrastructure (87),
elastic platform (91)

Extension The rapid provisioning engine details how appli-

cation components and virtual servers may be

provisioned by the cloud provider. This is re-

lated to the elastic infrastructure and elastic plat-
form patterns. How this provisioning function-

ality works in detail is not covered by the cloud

computing patterns.

2
4
1



BDetailedMappingofRelatedPatterns
CloudPatterns.org
Pattern Summary Mapped to Relation Explanation
Ready-Made

Environment

The cloud provider offers a predefined cloud-

based platform to remotely develop and deploy

applications.

Platform as a
Service (PaaS) (49), elastic
platform (91), execution
environment (104), hybrid
development
environment (326)

Generalization The ready-made environment details the re-

sources offered by PaaS. The cloud computing

patterns split these concepts among the patterns

elastic platform, execution environment and hybrid
development environment, as each of these ser-

vices could be used individually.

Realtime

Resource

Availability

The state of a cloud resource is reported in real

time.

Unknown N/A The current version of the pattern does not pro-

vide enough detail in order to be compared with

the cloud computing patterns.

Redundant

Physical

Connection for

Virtual Servers

Physical server used a second networking card

for resiliency.

Out of scope N/A The cloud computing patterns do not cover the or-

ganization of hardware in order to build a cloud.

Redundant

Storage

Physical storage devices are made redundant so

that a failure of the primary device can be handled

by the redundant device.

Out of scope N/A The cloud computing patterns do not cover the or-

ganization of hardware in order to build a cloud.

Remote

Administration

System

Remote administration of cloud resources is en-

abled through a management interface.

Infrastructure as a
Service (IaaS) (45), Platform
as a Service (PaaS) (49),
Software as a Service (SaaS)
(55)

Aspect

Refinement

All cloud service models support a self-service in-

terface, which is not separately discussed by the

cloud computing patterns.

Resilient

Environment

The current version of this pattern only lists other

of the abovementioned patterns that have to be

combined by this pattern. Currently, no addi-

tional explanatory text is provided.

Unknown N/A The current version of the pattern does not pro-

vide enough detail in order to be compared with

the cloud computing patterns.

Resource Cluster Multiple cloud resources are combined to a clus-

ter in order to offer functionality as a single re-

sources.

Out of scope Extension The clustering of physical resources to provide

virtual machine hosting, synchronized databases,

and other services that rely on multiple physical

resources, is a concept that has been common in

data centers and is not covered as a cloud-specific

concept by the cloud computing patterns.

Resource

Management

Cloud providers use tools and controls to isolate

the management activities of customers.

Unknown N/A The current version of the pattern does not pro-

vide enough detail in order to be compared with

the cloud computing patterns.

Resource

Management

System

IT resources are coordinated to handle manage-

ment actions, such as managing of virtual IT re-

source templates, allocation of resources, or load

balancing replications.

elastic infrastructure (87),
elastic platform (91)

Aspect

Refinement

The management functionality of cloud environ-

ments is summarized by the cloud computing pat-

terns for each of the considered hosting envi-

ronments. The resource management system de-

scribes this functionality as a separate pattern.

2
4
2



BDetailedMappingofRelatedPatterns
CloudPatterns.org
Pattern Summary Mapped to Relation Explanation
Resource Pooling Identical IT resources are grouped into a pool to

maintain their synchronicity.

Unknown N/A The current version of the pattern does not pro-

vide enough detail in order to be compared with

the cloud computing patterns.

Resource

Replication

IT resources are instantiatedmultiple times based

on templates of these resources (virtual images).

elastic infrastructure (87) Aspect

Refinement

The resource replication pattern details a func-

tionality of the elastic infrastructure to start mul-

tiple instances of virtual servers based on a virtual

server image. This is often used for elastic scaling

operations.

Resource

Reservation

Use of IT resources by customers is made exclu-

sively to customers.

Out of scope N/A The cloud computing patterns do not cover the or-

ganization of hardware in order to build a cloud.

Self-Provisioning A self-service interface is used to enable auto-

mated IT resource provisioning by customers.

Unknown N/A The current version of the pattern does not pro-

vide enough detail in order to be compared with

the cloud computing patterns.

Service Load

Balancing

A cloud service is deployed multiple times, and

requests of customers are load balanced among

these service instances.

Out of scope N/A The cloud computing patterns do not cover the or-

ganization of hardware in order to build a cloud.

Service State

Management

A cloud service is designed to use a state manage-

ment system instead of holding data in memory.

Out of scope N/A The cloud computing patterns do not cover the or-

ganization of hardware in order to build a cloud.

Shared Resources Physical resources are shared among multiple

cloud customers.

Unknown N/A The current version of the pattern does not pro-

vide enough detail in order to be compared with

the cloud computing patterns.

Single Root I/O

Virtualization

A physical I/O device is abstracted into multi-

ple virtualized ones in order to be shared among

cloud customers.

Out of scope N/A The cloud computing patterns do not cover the or-

ganization of hardware in order to build a cloud.

SLA

Management

System

Monitored information about cloud service state

is matched against service level agreements to en-

sure conformity.

Out of scope Extension Monitoring of service level agreements is not cur-

rently considered by the cloud computing pat-

terns.

SLA Monitor Conformity of cloud resources to defined service

level agreements can be monitored using agents

(monitor acesses), resource agents (monitor state

of resources), or polling agents (periodically re-

quest resource state).

Infrastructure as a
Service (IaaS) (45), Platform
as a Service (PaaS) (49),
Software as a Service (SaaS)
(55)

Extension The SLA monitor pattern details the monitoring

of resource use implemented by a cloud provider

to enable service level agreements.

Software-as-a-

Service

(SaaS)

The current version of this pattern only lists other

of the abovementioned patterns that have to be

combined by this pattern. Currently, no addi-

tional explanatory text is provided.

Unknown N/A The current version of the pattern does not pro-

vide enough detail in order to be compared with

the cloud computing patterns.

2
4
3



BDetailedMappingofRelatedPatterns
CloudPatterns.org
Pattern Summary Mapped to Relation Explanation
State

Management

Database

The state of an application is handled in a sepa-

rate database to be more scalable.

stateless component (171) Aspect

Refinement

The stateless component pattern covers how state

can be provided with each request to the resource

and how it can be handled in an external storage

offering. The state management database details

the former aspect.

Stateless

Hypervisor

A hypervisor is booted using a boot image that is

accessed over a network.

Out of scope N/A The cloud computing patterns do not cover the or-

ganization of hardware in order to build a cloud.

Storage

Maintenance

Window

LUN migration is used during planned mainte-

nance in order to avoid downtime.

Out of scope N/A The cloud computing patterns do not cover the or-

ganization of hardware in order to build a cloud.

Storage

Workload

Management

Storage workload is load balanced among multi-

ple storage systems managing LUNs.

Out of scope N/A The cloud computing patterns do not cover the or-

ganization of hardware in order to build a cloud.

Synchronized

Operating State

Instead of using clustering techniques, heartbeat

messages are used to synchronize virtual servers.

Out of scope N/A The cloud computing patterns do not cover the or-

ganization of hardware in order to build a cloud.

Usage

Monitoring

Multiple cloud usage monitors are used to track

and measure the IT resource usage.

Unknown N/A The current version of the pattern does not pro-

vide enough detail in order to be compared with

the cloud computing patterns.

Virtual Server A physical server is emulated to share the same

physical server among multiple virtual ones.

hypervisor (101) Aspect

Refinement

The concept of a virtual server is described by the

hypervisor pattern and not captured as a separate

pattern.

Virtual Server

Auto Crash

Recovery

Virtual servers are monitored and recovered in

case of operating system failure.

Out of scope N/A The cloud computing patterns do not cover the or-

ganization of hardware in order to build a cloud.

Virtual Server

Connectivity

Isolation

A virtual server is isolated from others with re-

spect to networking using virtual switches.

Out of scope N/A The cloud computing patterns do not cover the or-

ganization of hardware in order to build a cloud.

Virtual Server

Folder Migration

Virtual Server images are handled by LUNs. Out of scope N/A The cloud computing patterns do not cover the or-

ganization of hardware in order to build a cloud.

Virtual Server

NAT

Connectivity

A virtual server connects to a network via an in-

termediary.

Out of scope N/A The cloud computing patterns do not cover the or-

ganization of hardware in order to build a cloud.

Virtual

Server-to-Host

Affinity

A virtual server is hosted on one target host and

never moved.

Out of scope N/A The cloud computing patterns do not cover the or-

ganization of hardware in order to build a cloud.

Virtual

Server-to-Host

Anti-Affinity

Pattern

A virtual server will never be hosted on a speci-

fied host.

Out of scope N/A The cloud computing patterns do not cover the or-

ganization of hardware in order to build a cloud.

2
4
4



BDetailedMappingofRelatedPatterns
CloudPatterns.org
Pattern Summary Mapped to Relation Explanation
Virtual

Server-to-Host

Connectivity

A virtual switch is used to enable a secure

network-based channel between virtual server

and hypervisor.

Out of scope N/A The cloud computing patterns do not cover the or-

ganization of hardware in order to build a cloud.

Virtual

Server-to-Virtual

Server Affinity

A group of virtual servers will always be hosted

on the same physical server.

Out of scope N/A The cloud computing patterns do not cover the or-

ganization of hardware in order to build a cloud.

Virtual Switch

Isolation

Virtual switches are used to reduce network con-

tention and bandwidth competition.

Out of scope N/A The cloud computing patterns do not cover the or-

ganization of hardware in order to build a cloud.

Workload

Distribution

An IT resource is horizontally scaled, and a load

balancing system assigns workload to the individ-

ual instances.

elastic load balancer (254),
elastic queue (257), elasticity
manager (250)

Aspect

Refinement

The cloud computing patterns only describe load

balancing in addition to elastic scaling of re-

sources.

Zero Downtime A virtual server is migrated to a different physical

server if the physical server hosting it fails.

Out of scope N/A The cloud computing patterns do not cover the or-

ganization of hardware in order to build a cloud.

2
4
5





APPENDIXC

Toolchain for Cloud Computing Patterns

A complete view of the toolchain covered in Chapter 6 is given in

Fig. C.1. This toolchain supports the phases of the pattern engineering

process introduced in Section 1.3, which are pattern identification,

pattern authoring, and pattern application.

247



C
Toolchain

for
Cloud

Com
puting

Patterns

Figure C.1 – Detailed components of the toolchain supporting the cloud computing patterns

248



Bibliography

[ADKL14] V. Andrikopoulos, A. Darsow, D. Karastoyanova, and F.

Leymann. “CloudDSF–The CloudDecision Support Frame-

work for Application Migration.” In: Proceedings of the
European Conference on Service-Oriented and Cloud Com-
puting (ESOCC). 2014 (cit. on p. 87).

[AF09] M. L. Abbott and M. T. Fisher. The Art of Scalability: Scal-
able Web Architecture, Processes and Organizations for the
Modern Enterprise. Addison-Wesley, 2009 (cit. on p. 170).

[AH11] D. Allemang and J. Hendler. Semantic Web for the Working
Ontologist. Morgan Kaufmann, 2011 (cit. on p. 185).

[Ale78] C. Alexander. A Pattern Language: Towns, Buildings, Con-
struction. Oxford University Press, 1978 (cit. on p. 20).

249



Bibliography

[All08] J. Allspaw. The Art of Capacity Planning: Scaling Web Re-
sources. O’Reilly, 2008 (cit. on p. 160).

[Ara13] J. Araújo. “Semantic Mashups of Linked-USDL Services.”

MA thesis. University of Coimbra, 2013 (cit. on p. 204).

[ASL13] V. Andrikopoulos, S. Strauch, and F. Leymann. “Decision

Support for Application Migration to the Cloud.” In: Pro-
ceedings of the International Conference on Cloud Comput-
ing and Services Science (CLOSER). Citeseer, 2013, pp. 149–
155 (cit. on p. 87).

[BBKL14] U. Breitenbücher, T. Binz, O. Kopp, and F. Leymann. “Au-

tomating Cloud Application Management Using Manage-

ment Idioms.” In: Proceedings of the Sixth International
Conferences on Pervasive Patterns and Applications. Xpert
Publishing Services (XPS), 2014, pp. 60–69 (cit. on p. 170).

[BBL14] U. Breitenbücher, T. Binz, and F. Leymann. “A Method

to Automate Cloud Application Management Patterns.”

In: Proceedings of the Eighth International Conference on
Advanced Engineering Computing and Applications in Sci-
ences (ADVCOMP 2014). Xpert Publishing Services (XPS),

2014, pp. 140–145 (cit. on p. 170).

[BDA+11] I. Brandic, S. Dustdar, T. Anstett, D. Schumm, F. Leymann,

and R. Konrad. “Compliant Cloud Computing (C3).” In:

Proceedings of the IEEE International Conference on Cloud
Computing (CLOUD). 2011 (cit. on p. 89).

[BLS11] T. Binz, F. Leymann, and D. Schumm. “CMotion: A Frame-

work for Migration of Applications into and between

Clouds.” In: International Conference on Service-Oriented
Computing and Applications (SOCA). IEEE. 2011, pp. 1–4
(cit. on p. 88).

250



Bibliography

[BMR+96] F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad,

and M. Stal. Pattern-Oriented Software Architecture. Wiley,

1996 (cit. on pp. 20, 40, 43, 96, 101, 118, 166).

[BN09] P. A. Bernstein and E. Newcomer. Principles of Transaction
Processing. Morgan Kaufmann, 2009 (cit. on p. 62).

[Bor01] J. O. Borchers. “A Pattern Approach to Interaction Design.”

In: Ai & Society 15.4 (2001), pp. 359–376 (cit. on p. 20).

[Bre12] E. Brewer. “CAP Twelve Years Later: How the "Rules"

have Changed.” In: IEEE Computer Magazine 45 (2012),

pp. 23–28 (cit. on pp. 62, 90, 134).

[BT14] N. H. Bien and T. D. Thu. “Hierarchical Multi-Tenant Pat-

tern.” In: Proceedings of the International Conference on
Computing, Management and Telecommunications (Com-
ManTel). 2014 (cit. on p. 205).

[BTN+14] A. Bergmayr, J. Troya, P. Neubauer, M. Wimmer, and G.

Kappel. “UML-based Cloud Application Modeling with

Libraries, Profiles, and Templates.” In: Proceedings of the
International Workshop on Model-Driven Engineering on
and for the Cloud (CloudMDE) co-located with the Interna-
tional Conference on Model Driven Engineering Languages
and Systems (MoDELS). 2014 (cit. on pp. 206, 218).

[CC06] F. Chong and G. Carraro. Architecture Strategies for Catch-
ing the Long Tail. Technical Report. Microsoft, 2006. url:

http://msdn.microsoft.com/library/aa479069.aspx

(cit. on p. 92).

[CD01] J. Cheesman and J. Daniels. UML Components: A Simple
Process for Specifying Component-Based Software. Addison-
Wesley, 2001 (cit. on p. 157).

251

http://msdn.microsoft.com/library/aa479069.aspx


Bibliography

[CDK05] G. F. Coulouris, J. Dollimore, and T. Kindberg. Distributed
Systems: Concepts and Design. Pearson Education, 2005

(cit. on pp. 66, 67, 70, 72).

[Cha14] L. Charissis. “Design, Implementation and Evaluation of

a Rapid-Prototyping Framework for Telematics Services.”

Master Thesis. University of Stuttgart, Tilburg University,

University of Crete, 2014 (cit. on p. 199).

[Cod70] E. F. Codd. “A Relational Model of Data for Large Shared

Data Banks.” In: Communications of the ACM 13 (1970),

pp. 377–387 (cit. on pp. 47, 164).

[Cop06] J. O. Coplien. “Organizational patterns.” In: Enterprise In-
formation Systems VI. Springer, 2006, pp. 43–52 (cit. on

p. 94).

[Cop14] J. O. Coplien. Software Patterns. 2014. url: http : / /

hillside . net / patterns / 50 - patterns - library /

patterns / 222 - design - pattern - definition (cit. on

pp. 19, 20).

[Dai11] R. Daigneau. Service Design Patterns: Fundamental De-
sign Solutions for SOAP/WSDL and RESTful Web Services.
Addison-Wesley, 2011 (cit. on p. 157).

[Dar14] S. Dara. “Privacy Patterns in Public Clouds.” In: Proceedings
of the Indian Conference on Pattern Languages of Programs
(GuruPLoP). 2014 (cit. on p. 44).

[DCE13] B. Di Martino, G. Cretella, and A. Esposito. “Semantic

and Agnostic Representation of Cloud Patterns for Cloud

Interoperability and Portability.” In: Proceedings of the
IEEE 5th International Conference on Cloud Computing
Technology and Science (CloudCom). 2013 (cit. on p. 206).

252

http://hillside.net/patterns/50-patterns-library/patterns/222-design-pattern-definition
http://hillside.net/patterns/50-patterns-library/patterns/222-design-pattern-definition
http://hillside.net/patterns/50-patterns-library/patterns/222-design-pattern-definition


Bibliography

[DCES14] B. Di Martino, G. Cretella, A. Esposito, and Sperandeo.

“Semantic Representation of Cloud Services: A Case Study

for Microsoft Windows Azure.” In: Proceedings of the In-
ternational Conference on Intelligent Networking and Col-
laborative Systems (INCoS). 2014 (cit. on p. 206).

[DiM14] B. Di Martino. “Applications Portability and Services In-

teroperability among Multiple Clouds.” In: IEEE Cloud
Computing 1.1 (May 2014), pp. 74–77 (cit. on pp. 20, 206).

[DKPM07] Y. Diao, A. Keller, S. Parekh, and V. V. Marinov. “Predicting

Labor Cost through IT Management Complexity Metrics.”

In: Proceedings of the IFIP/IEEE International Symposium on
Integrated Network Management (IM). 2007, pp. 274–283
(cit. on p. 190).

[DMTF14] Distributed Management Task Force, Inc. (DMTF). Open
Virtualization Format Specification. 2014 (cit. on p. 25).

[EC09] P. Eeles and P. Cripps. The Process of Software Architecting.
Addison-Wesley, 2009 (cit. on pp. 156, 195).

[EFM14] O. Encina, E. B. Fernandez, and R. Monge. “A Misuse Pat-

tern for Denial-of-Service in Federated Inter-Clouds.” In:

Proceedings of the Asian Conference on Pattern Languages
of Programs (AsianPLoP). 2014 (cit. on pp. 44, 94).

[EKLR14] V.-P. Eloranta, J. Koskinen, M. Leppnen, and V. Reijonen.

Designing Distributed Control Systems: A Pattern Language
Approach. Wiley Publishing, 2014 (cit. on p. 43).

[EN10] R. Elmasri and S. Navathe. Fundamentals of Database Sys-
tems. Addison Wesley, 2010 (cit. on pp. 47, 164).

253



Bibliography

[EPM13] T. Erl, R. Puttini, and Z. Mahmood. Cloud Computing: Con-
cepts, Technology & Architecture. Prentice Hall, 2013 (cit.
on pp. 49, 50).

[FB14] M. M. Falatah and O. A. Batarfi. “Cloud Scalability Con-

siderations.” In: International Journal of Computer Science
& Engineering Survey (IJCSES) 5.4 (2014) (cit. on p. 204).

[FBBL14] C. Fehling, J. Barzen, U. Breitenbücher, and F. Leymann.

“A Process of Pattern Identification, Extraction, and Ap-

plication.” In: Proceedings of the European Conference on
Pattern Languages of Programs (EuroPLoP). 2014 (cit. on
pp. 33, 38, 54, 100, 150, 211).

[FBFL14] C. Fehling, J. Barzen, M. Falkenthal, and F. Leymann. “Pat-

ternPedia – Collaborative Pattern Identification and Au-

thoring.” In: Proceedings of Pursuit of Pattern Languages
for Societal Change (PURPLSOC) – Preparatory Workshop.
2014 (cit. on p. 38).

[FEL+12] C. Fehling, T. Ewald, F. Leymann, M. Pauly, J. Rütschlin,

and D. Schumm. “Capturing Cloud Computing Knowledge

and Experience in Patterns.” In: Proceedings of the IEEE
International Conference on Cloud Computing (CLOUD).
2012 (cit. on pp. 38, 43, 178, 203).

[Fer06] D. Ferrante. “Software Licensing Models: What’s Out

There?” In: IT Professional (2006) (cit. on p. 91).

[FGM+99] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter,

P. Leach, and T. Berners-Lee. Hypertext Transfer Protocol
– HTTP/1.1. W3C RFC 2616. 1999. url: http://www.w3.

org/Protocols/rfc2616/rfc2616.txt (cit. on p. 76).

254

http://www.w3.org/Protocols/rfc2616/rfc2616.txt
http://www.w3.org/Protocols/rfc2616/rfc2616.txt


Bibliography

[Fie00] R. T. Fielding. “Architectural Styles and the Design of

Network-based Software Architectures.” PhD thesis. Uni-

versity of California, 2000 (cit. on pp. 66, 75).

[FL14] C. Fehling and F. Leymann. PatternPedia: A Wiki for Pat-
terns. Technical Report 2014/03. University of Stuttgart,

2014 (cit. on p. 181).

[FLM10] C. Fehling, F. Leymann, and R.Mietzner. “A Framework for

Optimized Distribution of Tenants in Cloud Applications.”

In: Proceedings of the IEEE International Conference on
Cloud Computing (CLOUD). 2010 (cit. on pp. 38, 91).

[FLMS11] C. Fehling, F. Leymann, R. Mietzner, and W. Schupeck. A
Collection of Patterns for Cloud Types, Cloud Service Mod-
els, and Cloud-based Application Architectures. Technical
Report. University of Stuttgart, 2011 (cit. on pp. 43, 102,

104, 121, 123, 126, 127, 130, 132, 133, 135, 137, 139–143,

145, 148, 178, 203).

[FLR+11] C. Fehling, F. Leymann, R. Retter, D. Schumm, and W.

Schupeck. “An Architectural Pattern Language of Cloud-

based Applications.” In: Proceedings of the Conference on
Pattern Languages of Programs (PLoP). 2011 (cit. on pp. 38,

43, 101, 104, 178, 203).

[FLR+13] C. Fehling, F. Leymann, S. T. Ruehl, M. Rudek, and S. Ver-

clas. “Service Migration Patterns.” In: IEEE International
Conference on Service Oriented Computing and Application
(SOCA). 2013 (cit. on pp. 38, 66, 87, 126, 203, 204, 238, 240).

[FLR+14] C. Fehling, F. Leymann, R. Retter, W. Schupeck, and P.

Arbitter. Cloud Computing Patterns. Springer, 2014 (cit. on
pp. 18, 21, 23, 27, 38, 40, 43–45, 56, 63, 64, 71, 80, 84, 88, 90,

255



Bibliography

93, 95, 101, 121–123, 127–129, 140, 148, 151, 153, 158, 168,

179, 181, 194, 203).

[FLR14] C. Fehling, F. Leymann, and R. Retter. “Your Coffee Shop

Uses Cloud Computing.” In: Internet Computing, IEEE 18.5

(2014), pp. 52–59 (cit. on pp. 23, 38, 154, 203).

[FLRS12] C. Fehling, F. Leymann, J. Rütschlin, and D. Schumm.

“Pattern-Based Development and Management of Cloud

Applications.” In: Future Internet 4 (2012), pp. 110–141 (cit.
on pp. 38, 203).

[FLS+11] C. Fehling, F. Leymann, D. Schumm, R. Konrad, R. Miet-

zner, and M. Pauly. “Flexible Process-based Applications

in Hybrid Clouds.” In: Proceedings of the IEEE International
Conference on Cloud Computing (CLOUD). 2011 (cit. on

p. 38).

[FM11] C. Fehling and R. Mietzner. “Composite as a Service: Cloud

Application Structures, Provisioning, and Management.”

In: it - Information Technology Methoden und innovative
Anwendungen der Informatik und Informationstechnik 53.4

(2011), pp. 188–194 (cit. on p. 38).

[Fow02] M. Fowler. Patterns of Enterprise Application Architecture.
Addison-Wesley, 2002 (cit. on pp. 20, 97, 157, 162).

[Fow12] M. Fowler. NosqlDefinition. Jan. 2012. url: http : / /

martinfowler.com/bliki/NosqlDefinition.html (cit.

on p. 133).

[FT02] R. T. Fielding and R. N. Taylor. “Principled Design of the

Modern Web Architecture.” In: ACM Transactions on Inter-
net Technology 2.2 (May 2002), pp. 115–150 (cit. on pp. 66,

75).

256

http://martinfowler.com/bliki/NosqlDefinition.html
http://martinfowler.com/bliki/NosqlDefinition.html


Bibliography

[FTLW14] M. Fleck, J. Troya, P. Langer, and M. Wimmer. “Towards

Pattern-Based Optimization of Cloud Applications.” In:

Proceedings of the International Workshop on Model-Driven
Engineering on and for the Cloud (CloudMDE) co-located
with the International Conference on Model Driven Engi-
neering Languages and Systems (MoDELS). 2014 (cit. on

pp. 206, 218).

[FYW14] E. B. Fernandez, N. Yoshioka, and H. Washizaki. “Patterns

for Cloud Firewalls.” In: Proceedings of the Asian Conference
on Pattern Languages of Programs (AsianPLoP). 2014 (cit.
on pp. 44, 94).

[Gar10] P. Garvin. Carbon Accounting: Beyond The Calculation and
Looking To The Future. Green Economy Post. 2010. url:

http://greeneconomypost.com/carbon-accounting-

7439.htm (cit. on p. 91).

[Ger90] German Federal Law. Federal Data Protection Act (Bun-
desdatenschutzgesetz, BDSG). Dec. 1990. url: http://www.
iuscomp.org/gla/statutes/BDSG.htm (cit. on p. 89).

[GHJ94] E. Gamma, R. Helm, and R. E. Johnson. Design Patterns:
Elements of Reusable Object-Oriented Software. Addison-
Wesley, 1994 (cit. on pp. 20, 40, 43, 96, 101, 118, 166, 205).

[GL02] S. Gilbert and N. Lynch. “Brewer’s Conjecture and the

Feasibility of Consistent, Available, Partition-tolerantWeb

Services.” In: SIGACT News 33.2 (June 2002), pp. 51–59 (cit.
on pp. 62, 90, 134, 161).

[Gol71] R. P. Goldberg. “Virtual Machines: Semantics and Exam-

ples.” In: Proceedings of the IEEE International Computer
Society Conference. 1971 (cit. on p. 60).

257

http://greeneconomypost.com/carbon-accounting-7439.htm
http://greeneconomypost.com/carbon-accounting-7439.htm
http://www.iuscomp.org/gla/statutes/BDSG.htm
http://www.iuscomp.org/gla/statutes/BDSG.htm


Bibliography

[Gol72] R. P. Goldberg. “Architectural Principles for Virtual Com-

puter Systems.” PhD thesis. Harvard University, 1972 (cit.

on p. 60).

[Gol73] R. P. Goldberg. “Architecture of Virtual Machines.” In:

Proceedings of the Workshop on Virtual Computer Systems.
1973 (cit. on p. 60).

[GP13] A. Gambi and C. Pautasso. “RESTful Business Process

Management in the Cloud.” In: ICSE Workshop on Princi-
ples of Engineering Service-Oriented Systems (PESOS). IEEE.
2013, pp. 1–10 (cit. on p. 204).

[GR14] I. Gangwar and P. Rana. “Cloud Computing Overview:

Services and Features.” In: International Journal of Inno-
vations & Advancement in Computer Science (IJIACS) 3.1
(2014) (cit. on p. 204).

[GR93] J. Gray and A. Reuter. Transaction Processing - Concepts
and Techniques. Morgan Kaufmann, 1993 (cit. on pp. 62,

164).

[Gro12] D. C. M. W. Group. Cloud Infrastructure Management Inter-
face (CIMI) Model and RESTful HTTP-based Protocol. Oct.
2012. url: http://dmtf.org/sites/default/files/

standards / documents / DSP0263 _ 1 . 0 . 1 . pdf (cit. on

p. 25).

[GSH+07] C. J. Guo, W. Sun, Y. Huang, Z. H. Wang, and B. Gao.

“A Framework for Native Multi-Tenancy Application De-

velopment and Management.” In: Proceedings of the IEEE
International Conference on E-Commerce Technology and
the IEEE International Conference on Enterprise Computing,
E-Commerce, and E-Services. 2007 (cit. on p. 92).

258

http://dmtf.org/sites/default/files/standards/documents/DSP0263_1.0.1.pdf
http://dmtf.org/sites/default/files/standards/documents/DSP0263_1.0.1.pdf


Bibliography

[Han07] R. Hanmer. Patterns for Fault Tolerant Software. Wiley,

2007 (cit. on pp. 43, 45, 97, 170, 204).

[Han12] R. Hanmer. “Pattern Mining Patterns.” In: Proceedings of
the Conference on Pattern Languages of Programs (PLoP).
2012 (cit. on pp. 41, 56).

[Han13] R. Hanmer. Pattern-Oriented Software Architecture For
Dummies. John Wiley & Sons, 2013 (cit. on p. 20).

[Han14] R. Hanmer. “Patterns for Fault Tolerant Cloud Software.”

In: Proceedings of the Conference on Pattern Languages of
Programs (PLoP). 2014 (cit. on pp. 45, 170, 204).

[Har99] N. B. Harrison. “The Language of Shepherding.” In: Pro-
ceedings of the Conference on Pattern Languages of Pro-
grams (PLoP). 1999 (cit. on pp. 34, 42).

[HAZ07] N. B. Harrison, P. Avgeriou, and U. Zdun. “Using Patterns

to Capture Architectural Decisions.” In: IEEE Software 24.4
(2007), pp. 38–45 (cit. on p. 218).

[HFL12] K. Hashizume, E. B. Fernandez, and M. M. Larrondo-Petrie.

“Cloud Service Model Patterns.” In: Proceedings of the Con-
ference on Pattern Languages of Programs (PLoP). 2012 (cit.
on p. 44).

[HHA11] S. M. Hezavehi, U. van Heesch, and P. Avgeriou. “A Pattern

Language for Architecture Patterns and Software Tech-

nologies.” In: Proceedings of the European Conference on
Pattern Languages of Programs (EuroPLoP). 2011 (cit. on
p. 183).

[Hil14] M. Hilbert. “Architecture for a Cloud-Based Vehicle Telem-

atics Platform.” Diploma Thesis No. 3575. University of

Stuttgart, 2014 (cit. on pp. 195, 196).

259



Bibliography

[HKLS14] F. Haupt, D. Karastoyanova, F. Leymann, and B. Schroth.

“A Model-Driven Approach for REST Compliant Services.”

In: Proceedings of the IEEE International Conference on Web
Services (ICWS). 2014 (cit. on p. 75).

[HW03] G. Hohpe and B. Woolf. Enterprise Integration Patterns:
Designing, Building, and Deploying Messaging Solutions.
Addison-Wesley, 2003. url: http://www.eaipatterns.

com/ (cit. on pp. 40, 43, 47, 66, 72–74, 96, 102, 135, 166, 206,

227, 230, 231).

[HYF11] K. Hashizume, N. Yoshioka, and E. B. Fernandez. “Misuse

Patterns for Cloud Computing.” In: Proceedings of the Asian
Conference on Pattern Languages of Programs (AsianPLoP).
ACM. 2011, p. 12 (cit. on pp. 44, 95).

[IEE15a] IEEE. Cloud Profiles Working Group (CPWG). 2015. url:
http://standards.ieee.org/develop/wg/CPWG-2301_

WG.html (cit. on p. 25).

[IEE15b] IEEE. Intercloud Working Group (ICWG). 2015. url: http:
//standards.ieee.org/develop/wg/ICWG- 2302_WG.

html (cit. on p. 25).

[JP14] P. Jamshidi and C. Pahl. “Orthogonal Variability Modeling

to Support Multi-Cloud Application Configuration.” In:

Proceedings of the SeaClouds Workshop held in conjunc-
tion with the European Conference on Service-Oriented and
Cloud Computing (ESOCC). 2014 (cit. on p. 205).

[KAP14] D. Kourtesis, J. M. Alvarez-Rodríguez, and I. Paraskakis.

“Semantic-Based QoSManagement in Cloud Systems: Cur-

rent Status and Future Challenges.” In: Future Generation
Computer Systems 32 (2014) (cit. on p. 205).

260

http://www.eaipatterns.com/
http://www.eaipatterns.com/
http://standards.ieee.org/develop/wg/CPWG-2301_WG.html
http://standards.ieee.org/develop/wg/CPWG-2301_WG.html
http://standards.ieee.org/develop/wg/ICWG-2302_WG.html
http://standards.ieee.org/develop/wg/ICWG-2302_WG.html
http://standards.ieee.org/develop/wg/ICWG-2302_WG.html


Bibliography

[Kas05] M. Kasunic. Designing an Effective Survey. Technical Re-
port. Carnegie Mellon Software Engineering Institute,

2005 (cit. on p. 193).

[KBS05] D. Krafzig, K. Banke, and D. Slama. Enterprise SOA. Pren-
tice Hall, 2005 (cit. on pp. 66, 78).

[KSS10] A. Khajeh-Hosseini, I. Sommerville, and I. Sriram. Research
Challenges for Enterprise Cloud Computing. Technical Re-
port. Cornell University Library, 2010 (cit. on p. 93).

[LAA+04] D. Lucrédio, E. S. de Almeida, A. Alvaro, V. Cardoso, and

E. K. P. Garcia. “Student’s PLoP Guide: A Pattern Family

to Guide Computer Science Students during PLoP Confer-

ences.” In: Proceedings of the SugarLoafPLoP. 2004 (cit. on
pp. 34, 42).

[LC01] B. Leuf and W. Cunningham. The Wiki Way: Quick Col-
laboration on the Web. Addison-Wesley Professional, 2001

(cit. on p. 183).

[Ley09] F. Leymann. “Cloud Computing: The Next Revolution in

IT.” In: Proceedings of the 52th PhotogrammetricWeek. 2009,
pp. 3–12 (cit. on pp. 59, 66).

[LFM+11] F. Leymann, C. Fehling, R. Mietzner, A. Nowak, and S.

Dustdar. “MovingApplications to the Cloud: AnApproach

based on Application Model Enrichment.” In: International
Journal of Cooperative Information Systems 20.3 (2011),

pp. 307–356. doi: 10.1142/S0218843011002250 (cit. on

p. 88).

[MA01] D. A. Menasce and V. A. Almeida. Capacity Planning for
Web Services: Metrics, Models, and Methods. Prentice Hall,
2001 (cit. on pp. 160, 170).

261

http://dx.doi.org/10.1142/S0218843011002250


Bibliography

[MD98] G. Meszaros and J. Doble. “A Pattern Language for Pattern

Writing.” In: Pattern Languages of Program Design 3 (1998),
pp. 529–574 (cit. on pp. 20, 41, 102).

[MG11] P. Mell and T. Grance. The NIST Definition of Cloud Com-
puting. National Institute of Standards and Technology

(NIST), Sept. 2011. url: http : / / csrc . nist . gov /

publications/nistpubs/800-145/SP800-145.pdf (cit.

on pp. 22, 57, 69, 121, 123, 125).

[Mie10] R. Mietzner. “A Method and Implementation to Define

and Provision Variable Composite Applications, and its

Usage in Cloud Computing.” PhD thesis. University of

Stuttgart, 2010 (cit. on p. 199).

[MLU09] R. Mietzner, F. Leymann, and T. Unger. “Horizontal

and Vertical Combination of Multi-Tenancy Patterns in

Service-Oriented Applications.” In: International IEEE
EDOC Enterprise Computing Conference. 2009 (cit. on

p. 141).

[MM15] V. Mizonov and S. Manheim. Windows Azure Queues and
Windows Azure Service Bus Queues - Compared and Con-
trasted. Mar. 2015. url: http://msdn.microsoft.com/

en-us/library/windowsazure/hh767287.aspx (cit. on

p. 166).

[MR04] M. L. Manns and L. Rising. Fearless Change: Patterns for
Introducing New Ideas. Addison-Wesley, 2004 (cit. on p. 94).

[Neu94] B. C. Neuman. “Scale in Distributed Systems.” In: Readings
in Distributed Computing Systems. IEEE Computer Society

Press, 1994, pp. 463–489 (cit. on pp. 66, 71).

262

http://csrc.nist.gov/publications/nistpubs/800-145/SP800-145.pdf
http://csrc.nist.gov/publications/nistpubs/800-145/SP800-145.pdf
http://msdn.microsoft.com/en-us/library/windowsazure/hh767287.aspx
http://msdn.microsoft.com/en-us/library/windowsazure/hh767287.aspx


Bibliography

[NKL+12] A. Nowak, D. Karastoyanova, F. Leymann, A. Rapoport,

and D. Schumm. “Flexible Information Design for Busi-

ness Process Visualizations.” In: Proceedings of the IEEE
International Conference on Service-Oriented Computing
and Applications (SOCA). 2012 (cit. on p. 92).

[NL13a] A. Nowak and F. Leymann. An Overview on Implicit Green
Business Process Patterns. Technical Report 2013/05. Uni-
versity of Stuttgart, 2013 (cit. on p. 91).

[NL13b] A. Nowak and F. Leymann. “Green Business Process Pat-

terns - Part II.” In: Proceedings of the 6th IEEE International
Conference on Service Oriented Computing & Applications
(SOCA). 2013 (cit. on pp. 92, 216).

[NLS+11] A. Nowak, F. Leymann, D. Schleicher, D. Schumm, and S.

Wagner. “Green Business Process Patterns.” In: Proceedings
of the 18th Conference on Pattern Languages of Programs
(PLoP). 2011 (cit. on pp. 92, 216).

[Now14] A. Nowak. “Green Business Process Management : Meth-

ode und Realisierung.” PhD thesis. University of Stuttgart,

2014 (cit. on pp. 173, 183, 187).

[OAS12] OASIS. Topology and Orchestration Specification for Cloud
Applications Version 1.0. Aug. 2012. url: http://docs.
oasis- open.org/tosca/TOSCA/v1.0/csd04/TOSCA-

v1.0-csd04.html (cit. on p. 25).

[Pet95] M. Petre. “Why Looking Isn’t Always Seeing: Readership

Skills and Graphical Programming.” In: Communications
of the ACM 38 (1995), pp. 33–44 (cit. on pp. 26, 103, 111,

178, 213).

[Pri08] D. Pritchett. “BASE: An Acid Alternative.” In: ACM Queue
6 (2008), pp. 48–55 (cit. on p. 62).

263

http://docs.oasis-open.org/tosca/TOSCA/v1.0/csd04/TOSCA-v1.0-csd04.html
http://docs.oasis-open.org/tosca/TOSCA/v1.0/csd04/TOSCA-v1.0-csd04.html
http://docs.oasis-open.org/tosca/TOSCA/v1.0/csd04/TOSCA-v1.0-csd04.html


Bibliography

[Ram12] R. Ramakrishnan. “CAP and Cloud Data Management.”

In: IEEE Computer Magazine 45 (2012), pp. 23–28 (cit. on
pp. 90, 134).

[RJKG11] B. P. Rimal, A. Jukan, D. Katsaros, and Y. Goeleven. “Ar-

chitectural Requirements for Cloud Computing Systems:

An Enterprise Cloud Approach.” In: Journal of Grid Com-
puting 9.1 (2011), pp. 3–26 (cit. on p. 17).

[RSM14] P. Reimann, H. Schwarz, and B. Mitschang. “Data Patterns

to Alleviate the Design of Scientific Workflows Exempli-

fied by a Bone Simulation.” In: Proceedings of the 26th Inter-
national Conference on Scientific and Statistical Database
Management. ACM. 2014, p. 43 (cit. on p. 217).

[SAB+12] S. Strauch, V. Andrikopoulos, U. Breitenbücher, O. Kopp,

and L. Frank. “Non-Functional Data Layer Patterns for

Cloud Applications.” In: Proceedings of the 4th IEEE Inter-
national Conference on Cloud Computing Technology and
Science (CloudCom). 2012 (cit. on p. 90).

[SAB+13a] S. Strauch, V. Andrikopoulos, T. Bachmann, D. Karastoy-

anova, S. Passow, and K. Vukojevic-Haupt. “Decision Sup-

port for the Migration of the Application Database Layer

to the Cloud.” In: Proceedings of the IEEE International
Conference on Cloud Computing Technology and Science
(CloudCom). 2013 (cit. on pp. 87, 187).

[SAB+13b] S. Strauch, V. Andrikopoulos, U. Breitenbücher, S. Gómez

Sáez, O. Kopp, and F. Leymann. “Using Patterns to Move

the Application Data Layer to the Cloud.” In: Proceedings
of the 5th International Conference on Pervasive Patterns
and Applications (PATTERNS). 2013 (cit. on p. 90).

264



Bibliography

[SAB13] S. Strauch, V. Andrikopoulos, and T. Bachmann. “Migrat-

ing Application Data to the Cloud Using Cloud Data Pat-

terns.” In: Proceedings of the International Conference on
Cloud Computing and Service Science (CLOSER). 2013 (cit.
on p. 162).

[SAGL13] S. Strauch, V. Andrikopoulos, S. Gómez Sáez, and F. Ley-

mann. “ESB
MT

: A Multi-tenant Aware Enterprise Service

Bus.” In: International Journal of Next-Generation Comput-
ing 3.4 (2013) (cit. on p. 93).

[SBK+12] S. Strauch, U. Breitenbuecher, O. Kopp, F. Leymann, and

T. Unger. “Cloud Data Patterns for Confidentiality.” In:

Proceedings of the International Conference on Cloud Com-
puting and Service Science (CLOSER). 2012 (cit. on pp. 162,

216).

[Sch13] A. Schraitle. “Provisioning of Customizable Pattern-Based

Software Artifacts into Cloud Environments.” Diploma

Thesis No. 3468. University of Stuttgart, 2013 (cit. on

p. 199).

[Sch15] D. Schumm. “Sichten auf Geschäftsprozesse mit beson-

derer Betrachtung von Compliance.” PhD thesis. Univer-

sity of Stuttgart, 2015 (cit. on p. 219).

[SF12] P. J. Sadalage andM. Fowler.NoSQL Distilled: A Brief Guide
to the Emerging World of Polyglot Persistence. Addison-
Wesley, 2012 (cit. on pp. 133, 164).

[SFH+06] M. Schumacher, E. B. Fernandez, D. Hybertson, F.

Buschmann, and P. Sommerlad. Security Patterns:
Integrating Security and Systems Engineering. Wiley, 2006

(cit. on pp. 44, 94, 95, 97).

265



Bibliography

[SKS10] A. Silberschatz, H. F. Korth, and S. Sudarshan. Database
System Concepts. Mcgraw-Hill Professional, 2010 (cit. on

pp. 47, 164).

[SPH+12] J. Suzuki, D. H. Phan, M. Higuchi, Y. Yamano, and K. Oba.

“Model-Driven Integration for a Service Placement Op-

timizer in a Sustainable Cloud of Clouds.” In: Joint In-
ternational Conference on Soft Computing and Intelligent
Systems (SCIS) and International Symposium on Advanced
Intelligent Systems (ISIS). IEEE, 2012, pp. 301–306 (cit. on
p. 205).

[SRD14] G. Sousa, W. Rudametkin, and L. Duchien. “Challenges

for Automatic Multi-Cloud Configuration.” In: JLDP 14-
Journée Lignes de Produits (Dec. 2014) (cit. on p. 205).

[SSBM11] O. Schiller, B. Schiller, A. Brodt, and B. Mitschang. “Native

Support of Multi-tenancy in RDBMS for Software as a

Service.” In: EDBT. ACM, Jan. 2011, pp. 117–128 (cit. on

p. 93).

[TD15] H.-L. Truong and S. Dustdar. “Programming Elasticity in

the Cloud.” In: Computer 48.3 (2015), pp. 87–90 (cit. on

p. 216).

[Tiw11] S. Tiwari. Professional NoSQL. Wrox, 2011 (cit. on p. 164).

[TS06] A. S. Tanenbaum and M. van Steen. Distributed Systems
Principles and Paradigms Second Edition. Prentice Hall,

2006 (cit. on pp. 66, 67, 69, 70, 90, 163, 164).

[Vai14] M. Vainikka. “Migrating Legacy Applications to Cloud:

Case TOAS.” MA thesis. Lappeenranta University of Tech-

nology, 2014 (cit. on p. 204).

266



Bibliography

[Var08] J. Varia. Cloud Architectures. Technical Report. Amazon

Web Services, 2008 (cit. on pp. 161, 166).

[Var10a] J. Varia. Architecting for the Cloud: Best Practices. Technical
Report. Amazon Web Services, 2010 (cit. on pp. 161, 166).

[Var10b] J. Varia.Migrating Your Existing Applications to the Cloud –
A Phase-Driven Approach to Cloud Migration. Technical
Report. Amazon Web Services, 2010 (cit. on p. 166).

[Vog09] W. Vogels. “Eventually Consistent.” In: Communications
of the ACM 52 (2009), pp. 40–44 (cit. on p. 62).

[WCL+05] S. Weerawarana, F. Curbera, F. Leymann, T. Storey, and

D. F. Ferguson.Web Services Platform Architecture: SOAP,
WSDL, WS-Policy, WS-Addressing, WS-BPEL, WS-Reliable
Messaging, and More. Prentice Hall, Apr. 2005 (cit. on

pp. 21, 78, 156).

[WF11] T. Wellhausen and A. Fießer. “How to Write a Pattern.”

In: European Conference on Pattern Languages of Programs
(EuroPLoP). Vol. 11. 2011 (cit. on pp. 41, 102).

[Wie14] R. J. Wieringa. Design Science Methodology for Information
Systems and Software Engineering. Springer, 2014 (cit. on
p. 194).

[ZA08] U. Zdun and P. Avgeriou. “A Catalog of Architectural

Primitives for Modeling Architectural Patterns.” In: Infor-
mation and Software Technology 50.9 (2008), pp. 1003–1034

(cit. on p. 113).

[Zdu07] U. Zdun. “Systematic Pattern Selection Using Pattern Lan-

guage Grammars and Design Space Analysis.” In: Software:
Practice and Experience 37.9 (2007), pp. 983–1016 (cit. on
p. 20).

267



Bibliography

[Zim09] O. Zimmermann. “An Architectural Decision Modeling

Framework for Service-Oriented Architecture Design.”

PhD thesis. University of Stuttgart, 2009 (cit. on pp. 78,

218).

All links were last followed on May 31, 2015.

268



Acknowledgments (Danksagungen)

Abschließend möchte ich bei den Menschen bedanken, die mich wäh-

rend der Erstellung dieser Arbeit begleitet haben. Im Besonderen gilt

mein Dank meiner Familie und Freunden, die mich in dieser Zeit stets

unterstützt haben.

Meinem Doktorvater Prof. Dr. Dr. h. c. Frank Leymann danke ich sehr

für die außerordentliche fachliche und persönliche Betreuung während

meiner Promotion. Auch das vorangegangene Buchprojekt wäre ohne

seinen Einfluss und fortwährendeMotivation nicht zustande gekommen.

Meinem Zweitgutachter Univ.Prof. Dr. Schahram Dustdar danke ich

sehr für die freundliche Unterstützung meiner Promotion und den

anregenden Gedankenaustausch bei meinen Besuchen in Wien.

269



Acknowledgments (Danksagungen)

Bei meinen Kollegen vom Institut für Architektur von Anwendungs-

systemen möchte ich mich für die Zusammenarbeit bedanken. Für die

vielen Diskussionen und Ratschläge danke ich insbesondere Ralph Ret-

ter, David Schumm, Olaf Zimmermann, Daniel Schleicher und Oliver

Kopp. Weiterhin möchte ich Ulrike Ritzmann für die organisatorische

Unterstützung danken.

Für den fachlichen Austausch und die Zusammenarbeit möchte ich

mich auch bei Partnern aus der Industrie bedanken. Insbesondere gilt

dieser Dank Walter Schupeck, Stefan T. Ruehl, Peter Arbitter, Jochen

Rütschlin, Jens Nahm, Marc Rudek und Uli Held.

Zu guter Letzt danke ich den Studenten, die meine Forschung im Rah-

men Ihrer Diplom-, Bachelor- und Masterarbeiten unterstützt haben.

270


	List of Acronyms
	Zusammenfassung
	Abstract
	1 Introduction
	1.1 Terminology and Conventions
	1.1.1 Patterns and Pattern Languages
	1.1.2 Cloud Applications and Cloud Providers

	1.2 Problem Domain and Contributions
	1.2.1 Architectural Baseline of Cloud Computing
	1.2.2 Cloud Computing Patterns
	1.2.3 Cloud Computing Pattern Language
	1.2.4 Design Method for Cloud Applications

	1.3 Pattern Engineering Process
	1.4 Chapter Summary

	2 Related Work
	2.1 Guidelines for Pattern Research
	2.1.1 Pattern Identification and Authoring
	2.1.2 Iterative Pattern Review
	2.1.3 Participating in Pattern Conferences

	2.2 Other Cloud Computing Patterns
	2.2.1 Cloud Computing Patterns of PLoP Conferences
	2.2.2 Cloud Design Patterns (Amazon Web Services)
	2.2.3 Cloud Design Patterns (Microsoft Azure)
	2.2.4 Cloud Architecture Patterns
	2.2.5 CloudPatterns.org

	2.3 Chapter Summary

	3 Identification of Patterns for Cloud Computing
	3.1 Architectural Principles of Cloud Computing
	3.1.1 Cloud Computing Properties
	3.1.2 Impact of Cloud Computing Properties on Applications
	3.1.3 IDEAL Properties of Cloud Applications

	3.2 Cloud Application Properties in Other Architectural Styles
	3.2.1 Distributed Systems
	3.2.2 Messaging
	3.2.3 Representational State Transfer (REST)
	3.2.4 Service-Oriented Architectures

	3.3 Reference Cloud Application
	3.3.1 Cloud Runtime Environment
	3.3.2 Cloud Application
	3.3.3 Application Stack

	3.4 Architectural Topics for Cloud Applications
	3.4.1 Accounting and Controlling
	3.4.2 Application Migration
	3.4.3 Cloud Integration
	3.4.4 Compliance to Laws and Regulations
	3.4.5 Data Storage
	3.4.6 License Management
	3.4.7 Monitoring, Analysis, and Reporting
	3.4.8 Multi-Tenant Cloud Middleware
	3.4.9 Organizational Structures
	3.4.10 Security

	3.5 Information Sources for Cloud Computing Patterns
	3.5.1 Cloud Providers and Cloud Applications
	3.5.2 Existing Patterns

	3.6 Chapter Summary

	4 Design of Cloud Computing Patterns
	4.1 Pattern Document Format
	4.2 Pattern Language Structure
	4.2.1 References among Patterns
	4.2.2 Constraints on the Pattern Language Metamodel

	4.3 Graphical Design
	4.3.1 Pattern Document Layout
	4.3.2 Graphical Elements Used in Patterns
	4.3.3 Composition of Graphical Elements

	4.4 Summary of Cloud Computing Patterns
	4.4.1 Cloud Computing Fundamentals
	4.4.2 Cloud Offerings
	4.4.3 Cloud Application Architectures
	4.4.4 Cloud Application Management
	4.4.5 Composite Cloud Applications

	4.5 Chapter Summary

	5 Application of Cloud Computing Patterns
	5.1 Accessibility of Cloud Computing Patterns
	5.1.1 Categories of Cloud Computing Patterns
	5.1.2 Order of Pattern Consideration

	5.2 Pattern-Based Design Method for Cloud Applications
	5.2.1 Decomposition
	5.2.2 Workload
	5.2.3 State
	5.2.4 Component Refinement
	5.2.5 Elasticity and Resiliency

	5.3 Chapter Summary

	6 Toolchain for Cloud Computing Patterns
	6.1 Pattern Authoring Toolkit
	6.1.1 Information Classification Template
	6.1.2 Pattern Document Template and Stencil Set

	6.2 Pattern Importer
	6.2.1 Pattern Import Format Editor
	6.2.2 Pattern Import Format Converter

	6.3 Pattern Repository
	6.3.1 Pattern Document Database
	6.3.2 Pattern Browser
	6.3.3 Pattern Recommender
	6.3.4 Pattern Editor

	6.4 Reference Implementation Repository
	6.5 Chapter Summary

	7 Validation
	7.1 Use of Cloud Computing Patterns by Industry Partners
	7.1.1 Daimler TSS GmbH
	7.1.2 Dr. Ing. h.c. F. Porsche AG

	7.2 Uninfluenced Use of Cloud Computing Patterns
	7.2.1 Use in Research
	7.2.2 Use in Industry

	7.3 Chapter Summary

	8 Conclusions and Outlook
	8.1 Answers to Research Questions
	8.2 Limitations of Cloud Computing Patterns
	8.3 Research Opportunities
	8.3.1 Research-Driven Improvement of Patterns
	8.3.2 A Pattern Language for IT Applications
	8.3.3 Cloud Computing Patterns as Architectural Decisions
	8.3.4 Pattern-Based Architectural Modeling

	8.4 Chapter Summary

	A Detailed Pattern Engineering Process
	B Detailed Mapping of Related Patterns
	C Toolchain for Cloud Computing Patterns
	Bibliography
	Acknowledgments (Danksagungen)

