
Cloud Computing Patterns @ OOP 2017
Case Study and Discussion

Dr. Christoph Fehling

christoph.fehling@daimler.com
Daimler AG

@ccpatterns

http://www.cloudcomputingpatterns.org/oop17/

Get slides here!

Mercedes Me

2Introduction © Fehling

Agenda

Introduction

Part 1: Cloud Computing Patterns @ Mercedes Me
• What are the cloud computing patterns?
• What are the properties of a cloud-native application?
• How does a cloud-native application look like at Mercedes Me?

Part 2: the Non-technical “Stuff“ (Discussion)
• How does cloud computing affect procurement processes?
• Why are licenses of cloud products so problematic?
• How does cloud computing affect organizational hierarchies?

3

2010

How to compare cloud
providers?
How do clouds affect
application architectures?

2014 2016

How to run a private cloud?
How does a cloud affect an
organization and processes?

OOP 

© Fehling

http://www.cloudcomputingpatterns.org

4© Fehling

http://www.cloudcomputingpatterns.org

5

How does the Cloud behave?

How do users
behave?

How to build
Cloud Applications?

How to
manage

Cloud
Applications?

© Fehling

IDEAL Cloud Application Properties

6Introduction

Distribution: cloud applications are split up into multiple components…
… to utilize multiple cloud resources.
… because the cloud itself is a large distributed system.

Elasticity: cloud applications are scaled by adjusting resource numbers (scaling out) – not
by scaling up:
Scale out: Increase performance by adding more resources.
Scale up: Increase performance by improving existing resources.

? Loose Coupling: application components should not influence each other regarding factors
such as availability, data format, data exchange rate.
Example: failure of one application component does not cause failure of other components.

Isolated State: most application components should be stateless. They do not handle:
Session State: state of the communication with the application.
Application State: business data handled by the application.

Automated Management: management tasks during runtime have to be handled quickly.
Example: Cost reduction by adjusting pay-per-use resource numbers automatically.
Example: automatic reaction to resource failures.

© Fehling

Part 1: Cloud Computing Patterns @ Mercedes Me

7© Fehling

Mercedes Me

8Cloud Computing Patterns @ Mercedes Me © Fehling

Workload Patterns @ Mercedes Me

9© Fehling

Periodic Workload
IT resources with a peaking utilization at reoccurring time intervals experience
periodic workload.

Static Workload
IT resources with an equal utilization over time experience static workload.

Once-in-a-Lifetime Workload
IT resources with an equal utilization over time disturbed by a strong peak
occurring only once experience once-in-a-lifetime workload.

Continuously Changing Workload
IT resources with a utilization that grows or shrinks constantly over time
experience continuously changing workload.

Unpredictable Workload
IT resources with a random and unforeseeable utilization over time experience
unpredictable workload.

10Workload Patterns @ Mercedes Me

IDEAL
Cloud-Native Application

Isolated State

Distribution

Elasticity

Automated Management

Loose Coupling




© Fehling

Car Status Updates during a single Day

Workload Patterns @ Mercedes Me

00:00 02:00 04:00 06:00 08:00 10:00 12:00 14:00 16:00 18:00 20:00 22:00

Peak workload: beginning and end of each day
 Rush hour

Low workload: during each night
 People are sleeping

11© Fehling

Data Handling and Data Abstraction @ Mercedes Me

12© Fehling

Strict Consistency
Data is stored at different locations to improve response time and to avoid data
loss in case of failures while consistency of replicas is ensured at all times.

Eventual Consistency
Performance and availability of data in case of network partitioning are enabled
by ensuring data consistency eventually and not at all times.

13Data Handling and Data Abstraction @ Mercedes Me

IDEAL
Cloud-Native Application

Isolated State

Distribution

Elasticity

Automated Management

Loose Coupling





© Fehling

14Data Handling and Data Abstraction @ Mercedes Me

Strict Consistency

n

w r

n ≤ r + w

Eventual Consistency

n

n > r + w

w
r

IDEAL
Cloud-Native Application

Isolated State

Distribution

Elasticity

Automated Management

Loose Coupling





© Fehling

Data Abstractor
Data is abstracted to inherently support eventually consistent data storage
through the use of abstractions and approximations.

15Data Handling and Data Abstraction @ Mercedes Me

IDEAL
Cloud-Native Application

Isolated State

Distribution

Elasticity

Automated Management

Loose Coupling





© Fehling

16Data Handling and Data Abstraction @ Mercedes Me

Data Abstractor
IDEAL

Cloud-Native Application

Isolated State

Distribution

Elasticity

Automated Management

Loose Coupling





© Fehling

Mercedes Me Portal

17Data Handling and Data Abstraction @ Mercedes Me

A lot of eventual consistent data:
• Odometer
• Fuel level
• Service intervals
• Errors shown in the car

If the connectivity of the car is limited
(parking garage), an obsolete status is
displayed!

But can all data be treated this way?

© Fehling

Mercedes Me App

18Data Handling and Data Abstraction @ Mercedes Me

Same as in the portal:
• Odometer
• Fuel level
• Service intervals
• Errors shown in the car

But certain interactions must not be
abstracted!
• Door lock status
• Heating status
• Engine status (cooling)

 Data abstraction and eventual
consistency has to be evaluated for
each data element!

© Fehling

Mercedes Me Microservice Template

19© Fehling

Node-based Availability
A cloud provider guarantees the availability of nodes, such as individual virtual
servers, middleware components or hosted application components.

Environment-based Availability
A cloud provider guarantees the availability of the environment hosting
individual nodes, such as virtual servers or hosted application components.

20Mercedes Me Microservice Template

IDEAL
Cloud-Native Application

Isolated State

Distribution

Elasticity

Automated Management

Loose Coupling





© Fehling

21Mercedes Me Microservice Template

Node-based Availability

Environment-based Availability

IDEAL
Cloud-Native Application

Isolated State

Distribution

Elasticity

Automated Management

Loose Coupling





© Fehling

User Interface Component
Synchronous user interfaces are accessed by humans, while application-internal
interaction is realized asynchronously to ensure loose coupling.

22Mercedes Me Microservice Template

IDEAL
Cloud-Native Application

Isolated State

Distribution

Elasticity

Automated Management

Loose Coupling






© Fehling

23Mercedes Me Microservice Template

User Interface Component
IDEAL

Cloud-Native Application

Isolated State

Distribution

Elasticity

Automated Management

Loose Coupling






© Fehling

Processing Component
Processing functionality is handled by elastically scaled components.

24Mercedes Me Microservice Template

IDEAL
Cloud-Native Application

Isolated State

Distribution

Elasticity

Automated Management

Loose Coupling





© Fehling

25Mercedes Me Microservice Template

Processing Component

IDEAL
Cloud-Native Application

Isolated State

Distribution

Elasticity

Automated Management

Loose Coupling





© Fehling

Runtime
Environment

Platform
as a Service

Private
Cloud

Mercedes Me Microservice Template

26Mercedes Me Microservice Template

Elastic
Platform

Relational
Database

Key-value
Storage

Message-oriented
Middleware

Periodic
Workload

App
Microservice

Stateless
Component

Processing
Component

Data Access
Component

provide

hosted on

access

UI Microservice

User Interface
Component

Stateless
Component

request

© Fehling

Runtime
Environment

Mercedes Me Microservice Template

27Mercedes Me Microservice Template

Elastic
Platform

Platform
as a Service

Private
Cloud

Relational
Database

Key-value
Storage

Message-oriented
Middleware

UI Microservice

User Interface
Component

Stateless
Component

Periodic
Workload

App
Microservice

Stateless
Component

Processing
Component

Data Access
Component

hosted on

provide
access

Rabbit MQ MySQL RedisElastic
Runtime

access

request

© Fehling

Lessons Learned

28Mercedes Me Microservice Template

Moving from Node-based Availability to Environment-based Availability was the most
challenging factor.

Cloud Computing is a significant enabler for agile development.

Soft factors (Procurement, Licensing, Organizational Hierarchy) pose a significant challenge!

© Fehling

Part 2: The Non-technical “Stuff”:
Procurement, Licenses, Organizational Hierarchies

29© Fehling

1. Impact of Cloud Computing on
Procurement Processes

30© Fehling

Procurement of a Car Part (simplified view)

31

Specification
(Part + Software)

Suppliers

Production

- Software scales with the number of cars as it is installed in each one of them.
- Improvements / Fixes usually involve a visit to the shop.

System Integration

© Fehling

Procurement of a Car Part

Fixed price procurement

Change request (€€€) or
New Procurement (but only
one Supplier can do it):
Vendor Lock-In!

- User Behavior Change
- Cloud Interfaces
- New car models
- New functions
- Laws and regulations
- …

-> Procurement processes have to reflect that a backend is not a car part! 32

Backend System
1.

Specification
(Use Case)

2.
Development

3.
Live for

Customers

4.
Requirement

change

© Fehling

Procurement of cloud-based backend Systems

Cloud
Properties

(NIST)

Self-Service Interface

Rapid Elasticity

Resource Pooling

Measured Service

Manufacturer

Contract determines
number of resources

price Possibly increased
by supplier

CAPEX
Pay for max. required

Resources

Flexible Use
(Agile!)

Cost Reduction

OPEX
Pay for used
Resources

limited

(Supplier)Cloud Customer

-> The Cloud Customer benefits from Cloud Properties. This should not be the supplier…
-> The Benefits of clouds are highly dependent on procurement Processes! 33© Fehling

2. Licenses in the cloud

34© Fehling

The License Conflict

35

Our product is
the best to

achieve these
properties!

Vendor
consultants

We charge per
Microservice
instance …

Vendor
Sales

This stuff is
HOW

MUCH?!

Procurement
Department

Cloud
Architects

Agility

Elasticity
Microservices
Self-Service

…

WE WANT

-> Licensing models of many cloud products conflict with our architectural goals!

Many component instances vs. Cost reduction (= Monolith)

© Fehling

3. Impact of Cloud Computing on
Organization Hierarchies

36© Fehling

Organization Hierarchies and Clouds
GUI

Servlets

Web
Server

Billing

SAP

DB2

Event
Services

Spring
Boot

Key Value
Storage

User
Accounts

JEE Server

MySQL
DBMS Br

ok
er

 a
nd

 I
nt

eg
ra

ti
on

37

Application
Team

UI Team

Database
Team

Integration
Team

© Fehling

Organization Hierarchies and Clouds

Application
Team

System A
Responsible

System B
Responsible

System C
Responsible

Supplier CSupplier BSupplier A

Network … DBMS … VM …

Ticket

Ticket

Ticket

38

UI Team

Application
Team

Database
Team

Integration
Team

© Fehling

Organization Hierarchies and Clouds
GUI

Servlets

Web
Server

User
Accounts

Event
Services Billing

JEE Server Spring
Boot SAP

MySQL
DBMS

Key Value
Storage DB2 Br

ok
er

 a
nd

 I
nt

eg
ra

ti
on

39

UI Team

Application
Team

Database
Team

Integration
Team

© Fehling

Side Note: Clouds Thrive on Automation!
GUI

Servlets

Web
Server

User
Accounts

Event
Services Billing

JEE Server Spring
Boot SAP

MySQL
DBMS

Key Value
Storage DB2 Br

ok
er

 a
nd

 I
nt

eg
ra

ti
on

Amazon Cloud Formation

"Resources" : {
"WebServerRole": {
"Type": "AWS::IAM::Role",
"Properties" : {
"AssumeRolePolicyDocument" : {
"Statement" : [{
"Effect" : "Allow",
"Principal": { "Service": [{ "Fn::FindInMap" : ["Region2Principal", {"Ref" : "AWS::Region"},

"EC2Principal"]}] },
"Action" : ["sts:AssumeRole"]

}]
},
"Path": "/"

}
},

"WebServerRolePolicy": {
"Type": "AWS::IAM::Policy",
"Properties": {
"PolicyName" : "WebServerRole",

40© Fehling

Side Note: Clouds Thrive on Automation!
GUI

Servlets

Web
Server

User
Accounts

Event
Services Billing

JEE Server Spring
Boot SAP

MySQL
DBMS

Key Value
Storage DB2 Br

ok
er

 a
nd

 I
nt

eg
ra

ti
on

Docker Compose

->Infrastructure as Code is mandatory to
benefit from the cloud Properties!

41© Fehling

OK! Let‘s Automate our IT Stack!
GUI

Servlets

Web
Server

User
Accounts

Event
Services Billing

JEE Server Spring
Boot SAP

MySQL
DBMS

Key Value
Storage DB2 Br

ok
er

 a
nd

 I
nt

eg
ra

ti
on

42

UI Team

Application
Team

Database
Team

Integration
Team

© Fehling

OK! Let‘s Automate our IT Stack!
But Wait…

- Who creates (which part of) the model?

- Which System interprets and executes the model?

- Who controls the automation System?

- What about Existing Ticket Systems?!

- What about existing manual tasks?

-> Automation Requires control over the
Cloud to be centralized – not delegated!
-> Empowerment of DevOps Teams is needed to
use Clouds efficiently!
-> Existing Teams may be afraid to loose
control. 43

UI Team

Application
Team

Database
Team

Integration
Team

© Fehling

Lessons Learned

44

Revise procurement processes, because…
… suppliers using a cloud for you may create a vendor lock-in!
… many benefits of the cloud properties are lost if a supplier uses a

cloud for you!

Demand Cloud-compatible licenses, because…
… Costs per instance conflicts with architectural goals!

Revise your organizational hierarchies, because…
… clouds thrive on automation and require fewer delegation of manual
tasks!
… self-service interfaces are more agile than ticketing systems!

© Fehling

Summary

45© Fehling

Part 1: Cloud Computing Patterns @ Mercedes Me

46Summary

Microservice Template based on Cloud Computing Patterns and Pivotal Cloud Foundry

Static
Workload

Periodic
Workload

Once-in-a-lifetime
Workload

Unpredictable
Workload

Continuously
Changing
Workload

Node-based
Availability

Environment-based
Availability

User Interface
Component

Processing
Component

Strict
Consistency

Eventual
Consistency

Data
Abstractor

© Fehling

Part 1: Cloud Computing Patterns @ Mercedes Me

47Summary

Part 2: The Non-technical “Stuff”…
Procurement Processes have to be
adjusted for cloud computing
- How can we buy environments for

agile cloud development?
- How can we benefit from cloud

properties – not our suppliers?

Organization Hierarchies have to be
adjusted for cloud computing
- How can we benefit from CLOUD

automation?
- How can we organize work without

ticketing systems for manual tasks?

Part 3: Discussion during OOP 
I‘m here all week! Contact me: fehling.c@gmail.com +49 170 58 35 456 @ccpatterns
http://www.cloudcomputingpatterns.org

Microservice Template based on Cloud Computing Patterns and Pivotal Cloud Foundry

© Fehling

mailto:fehling.c@gmail.com

BACKUP

48© Fehling

Design Steps for Cloud Applications using Patterns
or

to see a Cloud Application Architecture you should go out and have a…

http://benedik.deviantart.com/
49© Fehling

IDEAL
Cloud-Native Application

Isolated State

Distribution

Elasticity

Automated Management

Loose Coupling







Design Steps for Cloud Applications

50Introduction

Decomposition Workload Data (State) Component
Refinement

Elasticity and
Resiliency

© Fehling

How to distribute Application Functionality?

Decomposition Workload Data (State) Component
Refinement

Elasticity and
Resiliency

51© Fehling

52Decomposition

Distributed Application
A cloud application divides provided functionality among multiple application
components that can be scaled out independently.

Components reside on separate functional layers
Often: user interface, processing, storage
Access is only allowed to same layer and the layer below
Dependencies between layers and interfaces are controlled

Layer-based Decomposition

IDEAL
Cloud-Native Application

Isolated State

Distribution

Elasticity

Automated Management

Loose Coupling




© Fehling

Distributed Application
A cloud application divides provided functionality among multiple application
components that can be scaled out independently.

53Decomposition

Business process model determines decomposition
Activities: tasks executed in a specific order (control flow)
Data elements: information handled by activities (data flow)
Functional application components (services) are accessed by process

Process-based Decomposition

Business Process

Data Elements

Services

IDEAL
Cloud-Native Application

Isolated State

Distribution

Elasticity

Automated Management

Loose Coupling




© Fehling

Distributed Application
A cloud application divides provided functionality among multiple application
components that can be scaled out independently.

54Decomposition

Decomposition based on the data processing function
Filter: application component processing data
Pipe: connection between filters (commonly messaging)

Pipes-and-Filters-based Decomposition

IDEAL
Cloud-Native Application

Isolated State

Distribution

Elasticity

Automated Management

Loose Coupling




© Fehling

Coffe Shop – Decomposition of Functions

55Decomposition

Identify functional components.

User Interface

Request
Queue

Special Processing

Coffe Processing

Distributed
Application

Result
Queue

© Fehling

What workload do components experience?

Decomposition Workload Data (State) Component
Refinement

Elasticity and
Resiliency

56© Fehling

Periodic Workload
IT resources with a peaking utilization at reoccurring time intervals experience
periodic workload.

Static Workload
IT resources with an equal utilization over time experience static workload.

Once-in-a-Lifetime Workload
IT resources with an equal utilization over time disturbed by a strong peak
occurring only once experience once-in-a-lifetime workload.

Continuously Changing Workload
IT resources with a utilization that grows or shrinks constantly over time
experience continuously changing workload.

Unpredictable Workload
IT resources with a random and unforeseeable utilization over time experience
unpredictable workload.

57Workload

IDEAL
Cloud-Native Application

Isolated State

Distribution

Elasticity

Automated Management

Loose Coupling



© Fehling



Result
Queue

Coffe Shop – Workloads

58Workload

Identify and compare workload generated by user groups at different components.

User Interface

Request
Queue

Special Processing

Coffe Processing

=

=

<

>

=

<

<

© Fehling

Where does the application handle state?

59

Decomposition Workload Data (State) Component
Refinement

Elasticity and
Resiliency

© Fehling

Stateless Component
State is handled external of application components to ease their scaling-out
and to make the application more tolerant to component failures.

Stateful Component
Multiple instances of a scaled-out application component synchronize their
internal state to provide a unified behavior.

Strict Consistency
Data is stored at different locations to improve response time and to avoid data
loss in case of failures while consistency of replicas is ensured at all times.

Data Abstractor
Data is abstracted to inherently support eventually consistent data storage
through the use of abstractions and approximations.

Eventual Consistency
Performance and availability of data in case of network partitioning are enabled
by ensuring data consistency eventually and not at all times.

60Data (State)

IDEAL
Cloud-Native Application

Isolated State

Distribution

Elasticity

Automated Management

Loose Coupling





© Fehling

Result
Queue

Coffee Shop – Data

61Data (State)

Identify components storing data.

User Interface

Request
Queue

Special Processing

Coffe Processing

© Fehling

How are components implemented?

Decomposition Workload Data (State) Component
Refinement

Elasticity and
Resiliency

62© Fehling

User Interface Component
Synchronous user interfaces are accessed by humans, while application-internal
interaction is realized asynchronously to ensure loose coupling.

Message-oriented Middleware
Asynchronous communication is provided while hiding complexity of
addressing, routing, or data formats to make interaction robust and flexible.

Processing Component
Processing functionality is handled by elastically scaled components.

Multi-component Image
Virtual servers host multiple application components that may not be active at
all times to reduce provisioning and decommissioning operations.

Batch Processing Component
Requests are delayed until environmental conditions make their processing
feasible.

63Component Refinement

IDEAL
Cloud-Native Application

Isolated State

Distribution

Elasticity

Automated Management

Loose Coupling





© Fehling

Coffee Shop – Refinement of Components

64Component Refinement

Decide how to implement components.

User Interface

Request
Queue

Special Processing

Coffe Processing

Result
Queue

© Fehling

Elasticity and Resiliency

Decomposition Workload Data (State) Component
Refinement

Elasticity and
Resiliency

65© Fehling

Elastic Queue
The number of accesses via messaging is used to adjust the number of required
application component instances.

Elastic Load Balancer
The number of synchronous accesses to an elastically scaled-out application is
used to determine the number of required application component instances.

Node-based Availability
A cloud provider guarantees the availability of nodes, such as individual virtual
servers, middleware components or hosted application components.

Watchdog
Applications cope with failures by monitoring and replacing application
component instances if the provider-assured availability is insufficient.

Environment-based Availability
A cloud provider guarantees the availability of the environment hosting
individual nodes, such as virtual servers or hosted application components.

66Elasticity and Resiliency

IDEAL
Cloud-Native Application

Isolated State

Distribution

Elasticity

Automated Management

Loose Coupling




© Fehling

Elasticity and Resiliency

67Elasticity and Resiliency

What shall happen if workload changes or something fails?

User Interface

Request
Queue

Special Processing

Coffe Processing

Result
Queue

© Fehling

IDEAL
Cloud-Native Application

Isolated State

Distribution

Elasticity

Automated Management

Loose Coupling







Design Steps for Cloud Applications using Patterns

68Summary

Decomposition Workload Data (State) Component
Refinement

Elasticity and
Resiliency

© Fehling

The End

69© Fehling

	Cloud Computing Patterns @ OOP 2017�Case Study and Discussion��
	Mercedes Me
	Agenda
	Foliennummer 4
	Foliennummer 5
	IDEAL Cloud Application Properties
	Part 1: Cloud Computing Patterns @ Mercedes Me
	Mercedes Me
	Workload Patterns @ Mercedes Me
	Foliennummer 10
	Car Status Updates during a single Day
	Data Handling and Data Abstraction @ Mercedes Me
	Foliennummer 13
	Foliennummer 14
	Foliennummer 15
	Foliennummer 16
	Mercedes Me Portal
	Mercedes Me App
	Mercedes Me Microservice Template
	Foliennummer 20
	Foliennummer 21
	Foliennummer 22
	Foliennummer 23
	Foliennummer 24
	Foliennummer 25
	Mercedes Me Microservice Template
	Mercedes Me Microservice Template
	Lessons Learned
	Part 2: The Non-technical “Stuff”:�Procurement, Licenses, Organizational Hierarchies
	Impact of Cloud Computing on �Procurement Processes
	Procurement of a Car Part (simplified view)
	Procurement of a Car Part
	Procurement of cloud-based backend Systems
	Licenses in the cloud
	The License Conflict
	Impact of Cloud Computing on Organization Hierarchies
	Organization Hierarchies and Clouds
	Organization Hierarchies and Clouds
	Organization Hierarchies and Clouds
	Side Note: Clouds Thrive on Automation!
	Side Note: Clouds Thrive on Automation!
	OK! Let‘s Automate our IT Stack!
	OK! Let‘s Automate our IT Stack!
	Lessons Learned
	Summary
	Part 1: Cloud Computing Patterns @ Mercedes Me
	Part 1: Cloud Computing Patterns @ Mercedes Me
	BACKUP
	Design Steps for Cloud Applications using Patterns
	Design Steps for Cloud Applications
	How to distribute Application Functionality?
	Foliennummer 52
	Foliennummer 53
	Foliennummer 54
	Coffe Shop – Decomposition of Functions
	What workload do components experience?
	Foliennummer 57
	Coffe Shop – Workloads
	Where does the application handle state?
	Foliennummer 60
	Coffee Shop – Data
	How are components implemented?
	Foliennummer 63
	Coffee Shop – Refinement of Components
	Elasticity and Resiliency
	Foliennummer 66
	Elasticity and Resiliency
	Design Steps for Cloud Applications using Patterns
	The End

